
Primitive Recursion

for

Higher Order Abstract Syntax

Jo�elle Despeyroux1, Frank Pfenning, Carsten Sch�urmann

August 30, 1996

CMU-CS-96-172

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Higher-order abstract syntax is a central representation technique in logical frameworks which maps

variables of the object language into variables in the meta-language. It leads to concise encodings,

but is incompatible with functions de�ned by primitive recursion or proofs by induction.

In this paper we propose an extension of the simply-typed lambda-calculus with iteration and

case constructs which preserves the adequacy of higher-order abstract syntax encodings. The well-

known paradoxes are avoided through the use of a modal operator which obeys the laws of S4. In

the resulting calculus many functions over higher-order representations can be expressed elegantly.

Our central technical result, namely that our calculus is conservative over the simply-typed lambda-

calculus, is proved by a rather complex argument using logical relations.

We view our system as an important �rst step towards allowing the methodology of LF to be

employed e�ectively in systems based on induction principles such as ALF, Coq, or Nuprl, leading

to a synthesis of currently incompatible paradigms.

1INRIA, F-06902 Sophia-Antipolis Cedex, joelle.despeyroux@sophia.inria.fr
This work was sponsored NSF Grant CCR-9303383.

The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the o�cial policies, either expressed or implied, of NSF or the U.S. Government.

Keywords: modal lambda calculus, higher order abstract syntax, primitive recursion

Contents

1 Introduction 1

2 Higher-Order Abstract Syntax 2

3 Modal �-Calculus 4

4 Iteration 7

5 Case 20

6 Preliminary results 27

6.1 Context . 27

6.2 Typing . 28

6.3 Substitution . 29

6.4 Atomic and canonical forms . 34

6.5 Evaluation . 34

6.6 Subordination of types . 34

7 Canonical form theorem 39

8 Type preservation theorem 56

9 Conservative extension theorem 57

10 Conclusion and Future Work 58

A De�nition modal �-calculus 60

B Preliminary results 63

C Canonical form theorem 74

D Type preservation theorem 111

E Conservative extension theorem 113

ii CONTENTS

1 INTRODUCTION 1

1 Introduction

Higher-order abstract syntax is a central representation technique in many logical frameworks,

that is, meta-languages designed for the formalization of deductive systems. The basic idea is to

represent variables of the object language by variables in the meta-language. Consequently, object

language constructs which bind variables must be represented by meta-language constructs which

bind the corresponding variables.

This deceptively simple idea, which goes back to Church [Chu40] and Martin-L�of's system of

arities [NPS90], has far-reaching consequences for the methodology of logical frameworks. On one

hand, encodings of logical systems using this idea are often extremely concise and elegant, since

common concepts and operations such as variable binding, variable renaming, capture-avoiding

substitution, or parametric and hypothetical judgments are directly supported by the framework

and do not need to be encoded separately in each application. On the other hand, higher-order

representations are no longer inductive in the usual sense, which means that standard techniques

for reasoning by induction do not apply.

Various attempts have been made to preserve the advantages of higher-order abstract syntax in

a setting with strong induction principles [DH94, DFH95], but none of these is entirely satisfactory

from a practical or theoretical point of view.

In this paper we take a �rst step towards reconciling higher-order abstract syntax with induc-

tion by proposing a system of primitive recursive functionals that permits iteration over subjects

of functional type. In order to avoid the well-known paradoxes which arise in this setting (see

Section 3), we decompose the primitive recursive function space A) B into a modal operator and

a parametric function space (2A)! B. The inspiration comes from linear logic which arises from

a similar decomposition of the intuitionistic function space A � B into a modal operator and a

linear function space (!A)(B.

The resulting system allows, for example, iteration over the structure of expressions from the

untyped �-calculus when represented using higher-order abstract syntax. It is general enough to

permit iteration over objects of any simple type, constructed over any simply typed signature and

thereby encompasses G�odel's system T [G�od90]. Moreover, it is conservative over the simply-typed

�-calculus which means that the compositional adequacy of encodings in higher-order abstract

syntax is preserved. We view our calculus as an important �rst step towards a system which allows

the methodology of logical frameworks such as LF [HHP93] to be incorporated into systems such

as Coq [PM93] or ALF [Mag95].

The remainder of this paper is organized as follows: Section 2 reviews the idea of higher order

abstract syntax and introduces the simply typed �-calculus (�!) which we extend to a modal

�-calculus in Section 3. Section 4 then presents the iteration and Section 5 de�nition by cases. In

Section 6 we start with the technical discussion and introduce some auxiliary concepts and derive

some basic results. Section 7 shows the proof of the canoncial form theorem which is the essential

for the proof of type preservation (Section 8) and our central result, namely that our system is

conservative over �! (Section 9). Finally, Section 10 assesses the results, compares some related

work, and outlines future work.

2 2 HIGHER-ORDER ABSTRACT SYNTAX

2 Higher-Order Abstract Syntax

Higher-order abstract syntax exploits the full expressive power of a typed �-calculus for the repre-

sentation of an object language, where �-abstraction provides the mechanism to represent binding.

In this paper, we restrict ourselves to a simply typed meta-language, although we recognize that an

extension allowing dependent types and polymorphism is important future work (see Section 10).

Our formulation of the simply-typed meta-language is standard.

Pure types: B ::= a j B1 ! B2

Objects: M ::= x j c j �x :A:M jM1 M2

Context: 	 ::= � j 	; x : B

Signature: � ::= � j �; a : type j �; c : B

We use a for type constants, c for object constants and x for variables. We assume that constants

and variables are declared at most once in a signature and context, respectively. As usual, we apply

tacit renaming of bound variables to maintain this assumption, and to guarantee capture-avoiding

substitution. Before we proceed with the presentation of the typing rules we introduce de�ne the

union 	1 [2 of two contexts 	1 and 	2.

De�nition 2.1 (Context Union)

Rules:

	 [� = 	 (CuBase)

	1 [(2; x : A) = (1 [2); x : A (CuInd)

and the lookup of the type of a variable x in 	 as 	(x) as:

De�nition 2.2 (Context Access) 	(x) = A i� there are 	1;	2 s.t. 	 = (1; x : A) [2

It might sound awkward to de�ne these notion in such depth of detail, but reasoning with variables

requires a rigorous treatment. For our typing and evaluation judgments we also �x a signature �

so we do not have to carry it around.

De�nition 2.3 (Typing judgment) 	 `M : B is de�ned by:

	(x) = B
StpVar

	 ` x : B

�(c) = B
StpConst

	 ` c : B

	; x : B1 ` M : B2

StpLam
	 ` �x :B1:M : B1 ! B2

	 ` M1 : B1 ! B2 	 ` M2 : B1

StpApp
	 ` M1 M2 : B2

As running examples throughout the paper we use the representation of natural numbers and

untyped �-expressions.

Example 2.4 (Natural numbers)

nat : type

p0q = z z : nat

pn+ 1q = s pnq s : nat! nat

2 HIGHER-ORDER ABSTRACT SYNTAX 3

Untyped �-expressions illustrate the idea of higher-order abstract syntax: object language vari-

ables are represented by meta-language variables.

Example 2.5 (Untyped �-expressions)

Expressions : e ::= x j lam x:e j e1@e2

exp : type

plam x:eq = lam (�x : exp: peq) lam : (exp! exp)! exp

pe1@e2q = app pe1q pe2q app : exp! (exp! exp)

pxq = x

Not every well-typed object of the meta-language directly represents an expression of the object

language. For example, we can see that peq will never contain a �-redex. Moreover, the argument

to lam which has type exp! exp will always be a �-abstraction. Thus the image of the translation

in this representation methodology is always a �-normal and �-long form. Following [HHP93], we

call these forms canonical as de�ned by the following two judgments.

De�nition 2.6 (Atomic and canonical forms)

1. 	 ` V # B (V is atomic of type B in)

2. 	 ` V * B (V is canonical of type B in)

are de�ned by:

	(x) = B
AtVar

	 ` x # B

�(c) = B
AtConst

	 ` c # B

	 ` V1 # B2 ! B1 	 ` V2 * B2

AtApp
	 ` V1 V2 # B1

	 ` V # a
CanAt

	 ` V * a

	; x : B1 ` V * B2

CanLam
	 ` �x :B1: V * B1 ! B2

Canonical forms play the role of \observable values" in a functional language: they are in one-

to-one correspondence with the expressions we are trying to represent. For Example 2.5 (untyped

�-expressions) this is expressed by the following property, which is proved by simple inductions.

Example 2.7 (Compositional adequacy for untyped �-expressions)

1. Let e be an expression with free variables among x1; : : : ; xn.

Then x1 : exp; : : : ; xn : exp ` peq * exp.

2. Let x1 : exp; : : : ; xn : exp `M * exp.

Then M = peq for an expression e with free variables among x1; : : : ; xn.

3. p�q is a bijection between expressions and canonical forms where p[e0=x]eq = [pe0q=x]peq.

Since every object in �! has a unique ��-equivalent canonical form, the meaning of every

well-typed object is unambiguously given by its canonical form. Our operational semantics (see

De�nitions 3.3 and 4.29) computes this canonical form and therefore the meaning of every well-

typed object. That this property is preserved under an extension of the language by primitive

recursion for higher-order abstract syntax may be considered the main technical result of this

paper.

4 3 MODAL �-CALCULUS

3 Modal �-Calculus

The constructors for objects of type exp from Example 2.5 are lam : (exp! exp)! exp and

app : exp! (exp! exp). These cannot be the constructors of an inductive type exp, since we have

a negative occurrence of exp in the argument type of lam. This is not just a formal observation, but

has practical consequences: we cannot formulate a consistent induction principle for expressions

in this representation. Furthermore, if we increase the computational power of the meta-language

by adding de�nition by cases or an iterator, then not every well-typed object of type exp has a

canonical form. For example,

� ` lam (�E : exp: case E of app E1 E2) app E2 E1 j lam E0) lam E0) : exp

but the given object does not represent any untyped �-expression, nor could it be converted to

one. The di�culty with a case or iteration construct is that there are many new functions of type

exp ! exp which cannot be converted to a function in �!. This becomes a problem when such

functions are arguments to constructors, since then the extension is no longer conservative even

over expressions of base type (as illustrated in the example above).

Thus we must cleanly separate the parametric function space exp ! exp whose elements are

convertible to the form �x : exp: E where E is built only from the constructors app, lam, and the

variable x, from the primitive recursive function space exp) exp which is intended to encompass

functions de�ned through case distinction and iteration. This separation can be achieved by using

a modal operator: exp! exp will continue to contain only the parametric functions, while exp)

exp = (2exp)! exp contains the primitive recursive functions.

Intuitively we interpret 2B as the type of closed objects of type B. We can iterate or distinguish

cases over closed objects, since all constructors are statically known and can be provided for. This

is not the case if an object may contain some unknown free variables. The system is non-trivial

since we may also abstract over objects of type 2A, but fortunately it is well understood and

corresponds (via an extension of the Curry-Howard isomorphism) to the intuitionistic variant of

S4 [DP96].

In Section 4 we introduce schemas for de�ning functions by iteration and case distinction which

require the subject to be of type 2B. We can recover the ordinary scheme of primitive recursion

for type nat if we also add pairs to the language. Pairs (with type A1 �A2) are also necessary for

the simultaneous de�nition of mutually recursive functions. Just as the modal type 2A, pairs are

lazy and values of these types are not observable|ultimately we are only interested in canonical

forms of pure type.

The formulation of the modal �-calculus below is copied from [DP96] and goes back to [PW95].

The language of types includes the pure types from the simply-typed �-calculus in Section 2.

Types: A ::= a j A1 ! A2 j 2A j A1 �A2

Objects: M ::= c j x j �x :A:M jM1 M2

j box M j let box x = M1 in M2 j hM1;M2i j fst M j snd M

Contexts: � ::= � j �; x : A

For the sake of brevity we usually suppress the �xed signature �. However, it is important that

signatures � and contexts denoted by 	 will continue to contain only pure types, while contexts �

and � may contain arbitrary types. We also continue to use B to range over pure types, while A

ranges over arbitrary types. De�nitions 2.1 and 2.2 extend in a trivial way to � (instead of), by

3 MODAL �-CALCULUS 5

�(x) = A
TpVarReg

�;� ` x : A

�(x) = A
TpVarMod

�;� ` x : A

�(c) = B
TpConst

�;� ` c : B

�;�; x : A1 ` M : A2

TpLam
�;� ` �x :A1:M : A1 ! A2

�;� ` M1 : A2 ! A1 �;� ` M2 : A2

TpApp
�;� ` M1 M2 : A1

�;� ` M1 : A1 �;� ` M2 : A2

TpPair
�;� ` hM1;M2i : A1 �A2

�;� ` M : A1 �A2

TpFst
�;� ` fst M : A1

�;� ` M : A1 � A2

TpSnd
�;� ` snd M : A2

�; � ` M : A
TpBox

�; � ` box M : 2A

�;� ` M1 : 2A1 �; x : A1; � ` M2 : A2

TpLet
�;� ` let box x =M1 in M2 : A2

Figure 1: Typing judgment �; � `M : A

replacing all B's in the de�nition by A's. The typing judgment �; � ` M : A uses two contexts:

�, whose variables range over closed objects, and �, whose variables range over arbitrary objects.

De�nition 3.1 (Typing judgment) �;� `M : A is de�ned in Figure 1.

As examples, we show some basic laws of the (intuitionistic) modal logic S4.

Example 3.2 (Laws of S4)

funlift : 2(A1 ! A2)! 2A1 ! 2A2

= �f :2(A1 ! A2): �x :2A1: let box f
0 = f in let box x0 = x in box (f 0 x0)

unbox : 2A! A

= �x :2A: let box x0 = x in x0

boxbox : 2A! 22A

= �x :2A: let box x0 = x in box (box x0)

The rules for evaluation must be constructed in such a way that full canonical forms are com-

puted for objects of pure type, that is, we must evaluate under certain �-abstractions. Objects of

type 2A or A1�A2 on the other hand are not observable and may be computed lazily. We there-

fore use two mutually recursive judgments for evaluation and conversion to canonical form, written

	 ` M ,! V : A and 	 ` M * V : B, respectively. The latter is restricted to pure types, since

only objects of pure type possess canonical forms. Since we evaluate under some �-abstractions,

free variables of pure type declared in 	 may occur in M and V during evaluation.

De�nition 3.3 (Evaluation judgments) 	 ` M ,! V : A and 	 ` M * V : B are de�ned in

Figure 2.

Note that the rules EvApp and EvAtomic are mutually exclusive, since the evaluation of M1 in

an application M1M2 either yields an atomic term (with a constant or parameter at the head) or

a �-abstraction. Since constants and parameters must have pure type, the type of the argument

M2 in EvAtomic must also be pure.

6 3 MODAL �-CALCULUS

	 ` M ,! V : a
EcAtomic

	 ` M * V : a

	; x : B1 ` M x * V : B2

EcArrow
	 ` M * �x :B1: V : B1 ! B2

	(x) = A
EvVar

	 ` x ,! x : A

�(c) = B
EvConst

	 ` c ,! c : B

�;	; x : A1 ` M : A2

EvLam
	 ` �x :A1:M ,! �x :A1:M : A1 ! A2

	 ` M1 ,! �x :A2:M
0

1 : A2 ! A1 	 ` M2 ,! V2 : A2 	 ` [V2=x](M
0

1) ,! V : A1

EvApp
	 ` M1 M2 ,! V : A1

	 ` M1 ,! V1 : B2 ! B1 	 ` V1 # B2 ! B1 	 ` M2 * V2 : B2

EvAtomic
	 ` M1 M2 ,! V1 V2 : B1

�;	 ` M1 : A1 �;	 ` M2 : A2

EvPair
	 ` hM1;M2i ,! hM1;M2i : A1 � A2

	 ` M ,! hM1;M2i : A1 �A2 	 ` M1 ,! V : A1

EvFst
	 ` fst M ,! V : A1

	 ` M ,! hM1;M2i : A1 �A2 	 ` M2 ,! V : A2

EvSnd
	 ` snd M ,! V : A2

�; � ` M : A
EvBox

	 ` box M ,! box M : 2A

	 ` M1 ,! box M
0

1 : 2A 	 ` [M 0

1=x](M2) ,! V : A2

EvLet
	 ` let box x =M1 in M2 ,! V : A2

Figure 2: Evaluation judgments 	 `M ,! V : A and 	 `M * V : B

4 ITERATION 7

4 Iteration

The modal operator 2 introduced in Section 3 allows us to restrict iteration and case distinction

to subjects of type 2B, where B is a pure type. The technical realization of this idea in its full

generality is rather complex. We therefore begin by describing the behavior of functions de�ned

by iteration informally, incrementally developing their formal de�nition within our system. In

the informal presentation we elide the box constructor, but we should convince ourselves that the

subject of the iteration or case is indeed assumed to be closed.

Example 4.1 (Addition) The usual type of addition is nat ! nat ! nat. This is no longer a

valid type for addition, since it must iterate over either its �rst or second argument and would

therefore not be parametric in that argument. Among the possible types for addition, we will be

interested particularly in 2nat! nat! nat and 2nat! 2nat! 2nat.

plus z n = n

plus (sm) n = s (plus m n)

Note that this de�nition cannot be assigned type nat! nat! nat or 2nat! nat! 2nat.

In our system we view iteration as replacing constructors of a canonical term by functions

of appropriate type, which is also the idea behind catamorphisms [FS96]. In the case of natural

numbers, we replace z : nat by a term Mz : A and s : nat ! nat by a function Ms : A ! A.

Thus iteration over natural numbers replaces type nat by A. We use the notation a 7! A for a

type replacement and c 7! M for a term replacement. Iteration in its simplest form is written

as \it ha 7! Ai M h
i" where M is the subject of the iteration, and
 is a list containing term

replacements for all constructors of type a. The formal typing rules for replacements are given

later in this section; �rst some examples.

Example 4.2 (Addition via iteration) Addition from Example 4.1 can be formulated in a num-

ber of ways with an explicit iteration operator. The simplest one:

plus0 : 2nat! nat! nat

= �m :2nat: �n :nat: it hnat 7! natim hz 7! nj s 7! si

Later examples require addition with a result guaranteed to be closed. Its de�nition is only slightly

more complicated.

plus : 2nat! 2nat! 2nat

= �m :2nat: �n :2nat: it hnat 7! 2nati m

h z 7! n

j s 7! (�r :2nat: let box r0 = r in box (s r0))i

If the data type is higher-order, iteration over closed objects must traverse terms with free

variables. We model this in the informal presentation by introducing new parameters (written

as �x:M) and extending the function de�nition dynamically to encompass the new parameters

(written as \where f(x) = M").

8 4 ITERATION

Example 4.3 (Counting variable occurrences) Below is a function which counts the number

of occurrences of bound variables in an untyped �-expression in the representation of Example 2.5.

It can be assigned type 2exp! 2nat.

cntvar (app e1 e2) = plus (cntvar e1) (cntvar e2)

cntvar (lam e) = �x: cntvar (e x) where cntvar x = (s z)

It may look like the recursive call in the example above is not well-typed since (e x) is not closed

as required, but contains a free parameter x. Making sense of this apparent contradiction is the

principal di�culty in designing an iteration construct for higher-order abstract syntax. As before,

we model iteration via replacements. Here, exp 7! 2nat and so lam 7! M1 and app 7! M2 where

M1 : (2nat! 2nat) ! 2nat and M2 : 2nat ! (2nat! 2nat). The types of replacement terms

M1 and M2 arise from the types of the constructors lam : (exp! exp) ! exp and app : exp !

(exp! exp) by applying the type replacement exp 7! 2nat. We write

cntvar : 2exp! 2nat

= �x :2exp: it hexp 7! 2nati x

h app 7! plus

j lam 7! �f :2nat! 2nat: f (box (s z))i

For example, after �-reduction and replacement the term

cntvar (box (lam (�x : exp: app x x)))

reduces to

(�f :2nat! 2nat: f (box (s z))) (�n :2nat: plus n n)

which can in turn be �-reduced to plus (box (s z)) (box (s z)) and �nally to the expected answer

box (s (s z)).

Note that our operational semantics (see De�nition 4.29) goes through di�erent intermediate

steps than the sequence above, but leads to the same result. Note also how replacement re-types

(and possibly renames) bound variables (from x : exp to n : 2nat) in the canonical form to

guarantee type preservation.

Example 4.4 (Counting abstractions) The function below counts the number of occurrences

of �-abstractions in an expression. It also has type 2exp! 2nat.

cntlam (app e1 e2) = plus (cntlam e1) (cntlam e2)

cntlam (lam e) = s (�x: cntlam (e x) where cntlam x = z)

Its representation as an iteration follows the same ideas as above.

cntlam : 2exp! 2nat

= �x :2exp: it hexp 7! 2nati x

h app 7! �n1 :2nat: �n2 :2nat: plus n1 n2
j lam 7! �f :2nat! 2nat: let box m = f (box z) in box (sm)i

4 ITERATION 9

Example 4.5 (First order logic) First order formulas and terms are represented as canonical

objects of type i over the signature which includes the following declarations.

Terms: t

Formulas: F ::= 8x: F j F1 � F2 j t1 = t2

i : type

o : type

p8x: Fq = forall (�x : i: pFq) forall : (i! o)! o

pF1 � F2q = impl pF1q pF2q impl : o! o! o

pt1 = t2q = eq pt1q pt2q eq : i! i ! o

To count the number of equality tests, we can specify cnteq with type i ! 2o ! 2nat as follows.

We require an argument term t in order to instantiate the universal quanti�er (since we did not

assume any constants of type i).

cnteq t (forall F) = cnteq t (F t)

cnteq t (impl F1 F2) = plus (cnteq t F1) (cnteq t F2)

cnteq t (eq t1 t2) = box (s z)

A representation of cnteq in the modal �-calculus has the form:

cnteq : i ! 2o! 2nat

= �t : i: �F :2o: it ho 7! 2nati F

h forall 7! �f : i! 2nat: (f t)

j impl 7! plus

j eq 7! �t1 : i: �t2 : i: box (s z)i

Example 4.6 (Booleans) Boolean values can be represented as objects of type bool over the

signature which includes the following declaration:

Boolean Values: b ::= > j ?

bool : type

p>q = true true : bool

p?q = false false : bool

Informally we can represent the Boolean operation and as follows. We must require all argument

and all result types are boxed, because the result of and will be used as subject for another case

distinction.
and true B2 = B2

and false B2 = false

A formal representation of and is then as follows:

and : 2bool ! 2bool! 2bool

= �B1 :2bool: �B2 :2bool:

it hbool 7! 2booli B1

h true 7! B2

j false 7! box falsei

10 4 ITERATION

Example 4.7 (Constant test) Below we de�ne a function which returns true if a given functional

object of type exp! exp (see Example 2.5) is constant with respect to the �rst argument.

const �x : exp: (lam (�y : exp: E x y)) = �y: const �x : exp: (E x y)

where const �x : exp: y = true

const �x : exp: (app (E1 x) (E2 x)) = and (const �x : exp: (E1 x)) (const �x : exp: (E2 x))

const �x : exp: x = false

The representation of const has type 2(exp! exp)! 2bool.

const : 2(exp! exp)! 2bool

= �F :2(exp! exp): it hexp 7! 2booli F

h lam 7! �E :2bool! 2bool: (E (box true))

j app 7! andi (box false)

Note how the last case in the informal de�nition is represented by applying the result of iteration

(which will be of type 2bool ! 2bool) to box false.

Example 4.8 (Translation to de Bruijn representation) Untyped �-expressions in de

Bruijn form are represented as canonical objects of type db over the signature which includes the

natural numbers and the following declarations.

DeBruijn expressions: d ::= n j lam d j d1@d2

db : type

pnq = var pnq var : nat! db

plam dq = lm pdq lm : db! db

pd1@d2q = ap pd1q pd2q ap : db! db! db

A translation from the higher-order representation to de Bruijn form has type 2exp ! db and is

represented formally in terms of an auxiliary function trans of type 2exp! 2nat! db:

trans (lam e) n = lm (�x: trans (e x) (s n)

where (trans x m) = var (minus m n))

trans (app e1 e2) n = ap (trans e1 n) (trans e2 n)

dbtrans e = trans e z

At the top level (when translating a closed term) we can apply this to any natural number to obtain

a function of type 2exp! db. Assuming functions minus (whose de�nition we discuss in the next

section) and unbox (see Example 3.2), this is implemented by the following iteration.

trans : 2exp! 2nat! db

= �x :2exp: it hexp 7! 2nat! dbi x

h lam 7! �f : (2nat! db)! (2nat! db):

�n :2nat: lm (f (�m :2nat: var (unbox (minus m n)))

(let box n0 = n in box (s n0)))

j app 7! �f1 :2nat! db: �f2 :2nat! db:

�n :2nat: ap (f1 n) (f2 n)i

dbtrans : 2exp! db

= �x :2exp: trans x (box z)

4 ITERATION 11

A number of other functions can be de�ned elegantly in this representation. For example, pairs

prove appear to be necessary for de�ning parallel �-reduction (which is convenient in the proof of

the Church-Rosser theorem).

Example 4.9 (Parallel reduction) Parallel reduction is here de�ned over expressions (from Ex-

ample 2.5). We state the function �rst informally:

par (app e1 e2) = par0 e1 (par e2)

par (lam e1) = lam (�x : exp: par (e1 x))

where par x = x and par0 x e3 = app x e3
par0 (app e1 e2) e

0

2
= app (par0 e1 (par e2)) e

0

2

par0 (lam e1) e
0

2
= �x: par (e1 x)

where par x = e0
2
and par0 x e3 = app e0

2
e3

Parallel reduction can be represented in our system | pairs are essential to do so. The type of

par is 2exp ! exp. The (unnamed) intermediate function de�ned by iteration has type 2exp !

exp � (exp! exp).

par : 2exp! exp

= �e :2exp:

fst(it hexp 7! exp� (exp! exp)i e

h app 7! �e1 : exp � (exp! exp): �e2 : exp� (exp! exp):

h (snd e1) (fst e2);

�e0
2
: exp: app ((snd e1) (fst e2)) e

0

2
i

j lam 7! �e1 : (exp� (exp! exp))! (exp� (exp! exp)):

h lam (�x : exp: fst (e1 hx; �e3 : exp: app x e3i));

�e0
2
: exp: fst (e1 he

0

2
; �e3 : exp: app e

0

2
e3i)i)

The following example illustrates two concepts: mutually inductive types and iteration over the

form of a (parametric!) function (which we already saw in Example 4.7).

Example 4.10 (Substitution in normal forms) Substitution is already directly de�nable by

application, but one may also ask if there is a structural de�nition in the style of [Mil91]. Normal

forms of the untyped �-calculus are represented by the type nf with an auxiliary de�nition for

atomic forms of type at.

Normal forms : N ::= P j lam x:N

Atomic forms: P ::= x j P@N

The representation function p:q is now overloaded, but it should be clear how to resolve it from

the context.
nf : type

at : type

pPq = atnf pPq atnf : at! nf

plam x:Nq = l (�x :at: pNq) l : (at! nf)! nf

pP@Nq = a pPq pNq a : at! nf! at

pxq = x

12 4 ITERATION

Substitution of atomic objects for variables is de�ned by two mutually recursive functions, one with

type subnf : 2(at! nf)! at! nf and subat : 2(at! at)! at! at.

subnf (�x :at: l (�y :at: N x y)) Q = l (�y :at: subnf (�x :at: (N x y)) Q

where subat (�x :at: y) Q = y)

subnf (�x :at: atnf (P x)) Q = atnf (subat (�x :at: P x) Q)

subat (�x :at: a (P x) (N x)) Q = a (subat (�x :at: P x) Q) (subnf (�x :at: N x) Q)

subat (�x :at: x) Q = Q

The last case arises since the parameter x must be considered as a new constructor in the body of

the abstraction. The functions above are realized in our calculus by a simultaneous replacement

of objects of type nf and at. In other words, the type replacement must account for all mutually

recursive types, and the term replacement for all constructors of those types.

subnf : 2(at! nf)! at! nf

= �N :2(at! nf): �Q :at: it hnf 7! nf j at 7! ati N

h l 7! �F :at! nf: l (�y :at: (F y))

j atnf 7! �P :at: atnf P

j a 7! �P :at: �N :nf: a P Ni

Q

Via �-contraction we can see that substitution amounts to a structural identity function.

Example 4.11 (Further mathematical operations) Below we de�ne the multiplication and

the exponentiation function which we can informally de�ne as follows:

mult z N = z

mult (sM) N = plus (multM N) N

ex M z = s z

ex M (s N) = mult (ex M N)M

The representation of mult and ex has type 2nat! 2nat! 2nat.

mult : 2nat! 2nat! 2nat

= �M :2nat: �N :2nat: it hnat 7! 2natiM

h z 7! box z

j s 7! �M 0 :2nat: (plusM 0 N)i

ex : 2nat! 2nat! 2nat

= �M :2nat: �N :2nat: it hnat 7! 2nati N

h z 7! box (s z)

j s 7! �N 0 :2nat: (multM N 0)i

Example 4.12 (Ackermann's function) Below we de�ne the function which we can informally

de�ne as follows:
A z = �x :nat: (s x)

A (s n) = �x :nat: (Ax n) x

4 ITERATION 13

where (Ax n) stands for (A:::(A| {z }
x�times

n)). The representation of A has type 2nat! 2nat! 2nat.

A : 2nat! 2nat! 2nat

= �m :2exp: it hnat 7! 2nat! natim

h z 7! �x :2nat: let box x0 = x in box (s x0)

j s 7! �f :2nat! 2nat: �x :2nat: it hnat 7! 2nati x hz 7! x; s 7! fii

The following example shows a scheme how to represent primitive recursion over natural num-

bers using pairs.

Example 4.13 (Primitive recursion over natural numbers) Below we de�ne a general

primitive recursive scheme over natural numbers. Let A be the result type of the primitive re-

cursion. For every Nz : A and Ns : 2nat ! A ! A we de�ne informally the primitive recursion

scheme:
pr z = Nz

pr (sm0) N = Ns m
0 (prm0)

The representation of pr must make use of pairs. The reason for this is that the natural number

must be passed as an argument to Ns. Using a standard iteration scheme would not be enough,

because this information is discarded. Pairs allow to recover the structure of this natural number:

pr : 2nat! A

= �m :2nat: snd

(it hnat 7! 2nat� Aim

h z 7! hbox z; Nzi

j s 7! �p :2nat�A: hbox (let box m0 = (fst p) in sm0); Ns (fst p) (snd p)ii)

We begin now with the formal discussion and description of the full language. Due to the

possibility of mutual recursion among types, the type replacements must be lists (see Example 4.10).

Type replacement: ! ::= � j (! j a 7! A)

The types being replaced form a type domain, i.e. a list of type constants.

Type domain: � ::= � j �; a

Which types must be replaced by an iteration depends on which types are mutually recursive

according to the constructors in the signature � and possibly the type of the iteration subject itself.

If we iterate over a function, the parameter of a function must be treated like a constructor for its

type, since it can appear in that role in the body of a function.

The types which must be replaced by an iteration form a type domain. The type replacement

must be de�ned in such a way that every type in this domain is replaced by some other type. This

leads to the introduction of well-formed type replacements ` ! : �.

De�nition 4.14 (Well formed type replacements)

Rules:

WrBase
` � : �

` ! : �
WrInd

` (! j a 7! A) : (�; a)

14 4 ITERATION

We address now the question of mutual dependency between atomic types by de�ning the

notion of type subordination which summarizes all dependencies between atomic types by separately

considering its static part C� which derives from the dependencies induced by the constructor types

from � and its dynamic part CB which accounts for dependencies induced from the argument types

of B. We say that type a1 subordinates type a2 if objects of the later type can be constructed from

objects of the former type.

But what does it mean, to build up objects of some pure type B? In the easier case where iter-

ation is performed over objects of atomic type a objects can only be constructed from constructors

with target type a, applied to some objects of the argument types. In the more complicated case,

they can be also formed from variables introduced by �-abstractions. These so called \parameters"

or \pseudo constructors" must be of target type a. We denote the target type of a pure type B by

�(B).

De�nition 4.15 (Target types)

�(a) := a

�(B1 ! B2) := �(B2)

Let B be the type of a (pseudo) constructor and M be an object of this type B. From which

other objects M can be constructed can be directly extracted from the type B, namely all objects

of the argument types of B | regardless if they occur positively or negatively. For a given pure

type B we de�ne the type domain Source(B) as

De�nition 4.16 (Source types)

Source(a) := �

Source(B1 ! B2) := (Source(B1); �(B1)) [Source(B2)

Note, that the resulting type domain can only contain atomic types. For example 4.10 it is easily

veri�ed that the constructor type of a yields: Source(at! nf! at) = (at; nf).

To obtain a set of all types on which an atomic type a may depend, we must select a subset of

the signature � containing all constant declaration with target type a. This set is called a set of

constructor types for a and denoted by S(�; a):

De�nition 4.17 (Constructor types)

S(�; a) = �

S(�0; x : B; a) =

�
S(�0; a); x : B if �(B) = a

S(�0; a) otherwise

In a more general setting we need the set of all constructor declarations of a mutual inductive

type. Type domains have been introduced to represent the set of all participating atomic types for

mutual inductive datatypes. The de�nition of the set of constructors S�(�;�) follows easily:

De�nition 4.18 (Constructor types over type domains)

S�(�; �) = �

S�(�;�; a) = S�(�;�)[S(�; a)

4 ITERATION 15

The intuition behind this construction is to de�ne the subordination relation which reects the

dependencies of atomic types in between each other. Target types and source types help us to

capture the dependencies for one pure type: the target type depends on each source type. These

dependencies are captured by the immediate subordination relation:

De�nition 4.19 (Immediate subordination relation) Let B a type.

a <B �(B) i� a 2 Source(B)

If we take the union of all immediate subordination relations which are induced by a

(sub)signature �, we obtain the static subordination relation. It is called static because the signa-

ture is �xed.

De�nition 4.20 (Static subordination relation) Let � be a signature.

a1 C� a2 i� � = �0; c : B and either a1 <B a2 or a1 C�
0 a2

If we consider Example 4.10 again we see that the static subordination relation of the signature is

the union of all immediate subordination relations:

� a : at! nf! at :

at <at!nf!at at and nf <at!nf!at at

� atnf : at! nf:

at <at!nf nf

� l : (at! nf)! nf:

at <at!nf!nf nf and nf <at!nf!nf nf

Putting it all together we obtain the static subordination relation:

at C� at; nf C� at; at C� nf; nf C� nf

Note that the static subordination relation need not to be transitive or reexive.

Constructor types are not the only source of subordination. As briey mentioned above, another

source are types introduced by the type of the iteration subject. Fortunately, it is always closed

which guarantees that no free variables can be encountered while traversing its structure except

internal variables de�ned in the body of the subject. Iteration over functional objects can introduce

new dependencies into the subordination graph as the following example shows.

Example 4.21 (Higher-order logic) First order logic can be easily extended to higher order

logic by introducing a rei�cation function from formulas to terms. To count the number of equality

tests, we extend the subject of iteration de�ned in Example 4.5 by a new abstraction over the

rei�cation function r which has type o! i. The introduction of a rei�cation function makes terms

and formulas depend mutually on each other. We therefore must distinguish between cnteqi of

16 4 ITERATION

type 2((o! i)! i) ! 2nat which counts occurrences of equality tests in terms and cnteqo of

type 2((o! i)! o)! 2nat which counts them in formulas.

cnteqo �r :o! i: (forall (�x : i: F r x)) = �x: (cnteqo �r :o! i: (F r x))

where cnteqi �r :o! i: x = z

cnteqo �r :o! i: (impl (F1 r) (F2 r)) = plus (cnteqo �r :o! i: (F1 r)) (cnteqo �r :o! i: (F2 r))

cnteqo �r :o! i: (eq (t1 r) (t2 r)) = s (plus (cnteqi �r :o! i: (t1 r)) (cnteqi �r :o! i: (t2 r)))

cnteqi �r :o! i: (r (F r)) = cnteqo �r :o! i: (F r)

The representation of cnteqo in the modal �-calculus has the form:

cnteqo : 2((o! i)! o)! 2nat

= �F :2((o! i)! o): it ho 7! 2nat; i 7! 2nati F

h forall 7! �f :2nat! 2nat: (f (box z))

j impl 7! plus

j eq 7! �m :2nat: �n :2nat: let box r = plus m n in box (s r)i

It is clear that the type of the iteration subject must be taken into consideration when de�ning

the general subordination relation. We proceed now by characterizing all those dependencies which

arise from the type B of the iteration subject which will lead to the notion of dynamic subordination.

From the example above we can see that variables occuring in the closed subject of iteration can be

interpreted as constructors if we look at the object from a purely syntactical point of view. We call

those variables pseudo constructors and correspondingly their types as pseudo constructor types.

A closer look reveals that not all abstractions in a closed term introduce relevant pseudo con-

structors: Relevant with respect to the subordination relation are only the top-level pseudo con-

structors which are introduced as variables of the argument types of B. All others are of some

subtype of either a constructor type from the signature or a pseudo constructor type. Pseudo

constructor types of B are hence inductively de�ned as follows.

De�nition 4.22 (Set of pseudo constructor types)

PCT(a) = fg

PCT(B1 ! B2) = fB1g [PCT(B2)

In the next step we de�ne the dynamic subordination relation which can be directly determined

from the set of pseudo constructor types. We follow the same idea as in the static case: every pseudo

constructor type in PCT(B) induces a new set of dependencies. Taking all these sets together we

�nally arrive at the dynamic subordination relation:

De�nition 4.23 (Dynamic subordination relation) Let B be a pure type.

a1 CB a2 :, B = B1 ! B2 and either a1 <B1
a2 or a1 CB2

a2

Consider type B = 2((o! i)! o) from the previous example. The dynamic subordination relation

is then characterized by o CB i and i CB i. o CB i says now that we have a pseudo constructor

which behaves as some kind of embedding function from formulas into individuals. It should be

immediately evident, that the presence of such an embedding function turns the �rst order logic

from example 4.5 into a higher order logic. Static and dynamic subordination represent local

dependencies between atomic types. To obtain the global subordination relation, the union of both

must be closed under transitivity.

4 ITERATION 17

De�nition 4.24 (Global subordination relation) Let B be a pure type.

J�;B :, (C� [CB)�

Note, that that the global subordination relation is not necessarily reexive. On the other hand

if the subordination relation is reexive, i.e. for the atomic type �(B), �(B) J�;B �(B) holds, then

�(B) is recursive or inductive with respect to B.

The notion of inductive type and subordination are very closely related. In fact, the subordina-

tion relation is de�ned with the purpose to extend the notion of inductive types. Note that static

type subordination is built into calculi where inductive types are de�ned explicitly (such as the

Calculus of Inductive Constructions [PM93]); here it must be recovered from the signature since we

impose no ordering constraints except that a type must be declared before it is used. Our choice

to recover the type subordination relation from the signature allows us to perform iteration over

any functional type, without �xing the possibilities in advance.

As we have seen in example 4.21, the dynamic subordination relation implies that terms and

formulas depend on each other. Hence, static subordination constitutes only part of the subor-

dination relation. If we would follow the paradigm used in Coq we must calculate internally a

syntactical de�nition of the new inductive type, where pseudo constructors are de�ned as real con-

structors. This has to be done on the y because as we will see later in the typing rules, the type

of the subject of iteration B must be inferred �rst. It is indeed possible to proceed this way, and it

is also possible to show the equivalence of both formulations (which we are not going to do here).

All type constants which are mutually dependent with �(B), written I(�;B), form an inductive

datatype.

De�nition 4.25 (Inductive type) Let B be a type and � a signature:

I(�;B) := faj�(B) J�;B a and a J�;B �(B)g

Revisiting example 4.21 extending �rst order logic to higher order logic we can calculate the in-

ductive type I(�; (o! i)! o) = fo; ig. The set of constructors has then the following form:

S�(�; o; i) = forall : (i! o)! o; impl : o! o! o; eq : i! i ! o

Let us now address the question of how the type of an iteration is formed: If the subject of

iteration has type B, the iterator object has type h!i(B), where h!i(B) is de�ned inductively by

replacing each type constant according to !, leaving types outside the domain �xed. The replace-

ment application might traverse over type constants not de�ned in !. This becomes immediately

evident when we consider Example 4.8: nat is traversed, but not de�ned in !. Also in Example 4.5:

i is not de�ned in !. But since objects of such strictly subordinated types do not participate in

the process of iteration, their types remain unchanged.

De�nition 4.26 (Type replacement)

h!i(a) :=

�
A if !(a) = A

a otherwise

h!i(B1 ! B2) := h!i(B1)! h!i(B2)

18 4 ITERATION

A similar replacement is applied at the level of terms: the result of an iteration is an object which

resembles the (canonical) subject of the iteration in structure, but object constants are replaced

by other objects carrying the intended computational meaning of the di�erent cases. Even though

the subject of iteration is closed at the beginning of the replacement process, we need to deal

with embedded �-abstractions due to higher-order abstract syntax. But since such functions are

parametric we can simply replace variables x of type B by new variables x0 of type h!i(B).

Term replacement:
 ::= � j (
 j c 7!M) j (
 j x 7! x0)

Initially the domain of a term replacement is a signature containing all constructors whose

target type is in I(�;B). We refer to this signature as S�(�; I(�;B)). The form of iteration

follows now quite naturally: We extend the notion of objects by

M ::= : : : j it h!iM h
i

and extend the typing rules for iteration. To do so we must introduce a new typing judgment for

term replacements
: �; � `
 : h!i(�).
 is well-typed if it replaces every constant of some

signature � with some object of correct type.

De�nition 4.27 (Typing judgment for iteration) extending De�nition 3.1:

�;� `M : 2B ` ! : � �;� `
 : h!i(�0)
TpIt

�;� ` it h!iM h
i : h!i(B)

where � = I(�;B) and �0 = S�(�;�)

TrBase
�;� ` � : h!i(�)

�; � `
 : h!i(�) �; � `M : h!i(B0)
TrInd

�;� ` (
 j c 7!M) : h!i(�; c : B0)

It should now be clear, how to proceed when developing a function which involves iteration,

as the one used to translate �-expressions into deBruijn representation in Example 4.8. In a �rst

step it is necessary to de�ne the type of the function, that is to make explicit which arguments

must be boxed and which not. This is mainly determined by the subject of the iteration. On the

basis of this type the type replacement ! need to be speci�ed. In Example 4.8 we de�ned iteration

over an object of type 2exp. During the traversal of the term, exp was mapped into a function of

type 2nat! db because the relative de Bruijn index changes during the traversal. This is already

enough to �x the type replacement: ! = exp 7! 2nat! db.

In a second step the set of constructors which must be replaced is determined by the inductive

datatype I(�; exp) = exp. By de�nition it follows that

S�(�; exp) = lam : (exp! exp)! exp; app : exp! (exp! exp)

The operational character of iteration makes it now necessary to de�ne the term replacement,

mapping lam and app to objects M1 and M2, respectively. The typing rule TrBase and TrInd

determine their types, but there is also a very intuitive way to do so: lam expects one parameter,

which we assume to be transformed to a parameter of new type. Its type results from replacing

4 ITERATION 19

every occurrence exp in the type of the parameter by the new type 2nat! db | which is exactly

expressed by the type replacement. Hence M1 must have the type

((2nat! db)! (2nat! db))! (2nat! db)

and similarly the replacement for app must have type

(2nat! db)! (2nat! db)! (2nat! db):

The iteration itself has hence the type (2nat! db).

Applying a term replacement must be restricted to canonical forms in order to preserve types.

Fortunately, our type system guarantees that the subject of an iteration can be converted to

canonical form. Applying a replacement then transforms a canonical form V of type B into a

well-typed object h!;
i(V) of type h!i(B). We call this operation elimination. It is de�ned along

the structure of V .

De�nition 4.28 (Elimination)

h!;
i(c) =

�
M if
(c) = M

c otherwise
(ElConst)

h!;
i(x) =
(x) (ElVar)

h!;
i(�x :B: V) = �x0 :h!i(B): h!;
 j x 7! x0i(V) (ElLam)

h!;
i(V1 V2) = h!;
i(V1) h!;
i(V2) (ElApp)

Constructors and variables must be mapped to some objects de�ned in the term replacement

. As encountered above, not all types occuring in the subject type of the iteration object live in

the inductive datatype. This property implies that elimination might encounter constructors which

are not de�ned in the term replacement. In this case we do not replace the constants, as already

indicated by the type replacement which leaves those atomic types unchanged. When eliminating a

�-abstraction �x :B: V , ElLam applies: x, introduced by the �-abstraction is a pseudo constructor

which will be renamed to x0. The term replacement must hence be extended by x 7! x0. The

elimination result must then be abstracted over the newly introduced variable x0 of type h!i(B).

The term resulting from elimination might, of course, contain redices and must itself be evalu-

ated to obtain a �nal value. Thus we obtain the following evaluation rule for iteration.

De�nition 4.29 (Evaluation judgment) extending De�nition 3.3:

	 `M ,! boxM 0 : 2B � `M 0 * V 0 : B 	 ` h!;
i(V 0) ,! V : h!i(B)
EvIt

	 ` it h!iM h
i ,! V : h!i(B)

The reader is invited to convince himself that this operational semantics yields the expected

results on the examples of this section.

Our calculus also contains a case construct whose subject may be of type 2B for arbitrary

pure B. It allows us to distinguish cases based on the intensional structure of the subject. For

example, we can test if a given (parametric!) function is the identity or not. We discuss the case

construct in the next section.

20 5 CASE

5 Case

Iteration is a powerful mechanism which replaces a general recursion scheme in our system. We

have seen that we can recover primitive recursion of natural numbers since our calculus contains

pairs. A quite natural question to ask is if iteration can be used to mimic de�nition by cases. We

currently have no proof of this, but we strongly suspect that it is not. We start with some easy

examples.

Example 5.1 (Comparison) To check if a natural number is greater then 0 we would like to

write informally
gt0m = case m of z) false

j (sm0)) true

In our system we view case distinction as a selection of a branch, triggered by the head constant

of the case subject. We replace the z : nat by an objectMz : A and s : nat! nat byMs : 2nat! A.

Note that the argument type of Ms is 2nat and not nat as one might suspect at a �rst sight. This

is because we know that the case subject is closed and hence its arguments must be closed, too.

It seems that our construction does not work for functional case subjects. To solve this obvious

contradiction is one of the main di�culties of the design of a suitable case operator. The case

construct in its simplest form is written as \case hAiM h�i" where M (of type 2a) is the subject

of case, and � is a list containing matches for all constructors of type a.

Example 5.2 (Comparison with case) The greater-than function from example 5.1 can be for-

mulated as follows:

gt0 : 2nat! bool

= �m :2nat: case hboolim hz) falsej s) �m0 :2A: truei

Boolean connectives serve as further simple examples which show the use of the case constructor

in our system. We have already seen a representation of conjunction in example 4.6.

Example 5.3 (Boolean operators) Informally we can represent not and or as follows. We must

require all argument and all result types are boxed, because the result of a boolean operation might

be used for another case distinction | as it is commonly the case.

not B = case B of

h true) false

j false) truei

or B1 B2 = case B1 of

h true) true

j false) B2i

The formal representation of the Boolean operations is as follows:

not : 2bool! 2bool

= �B :2bool:

case h2booli B

h true) box false

j false) box truei

or : 2bool ! 2bool! 2bool

= �B1 :2bool: �B2 :2bool:

case h2booli B1

h true) box true

j false) B2i

Many more examples are representable in our system. We start with presenting subtraction

(which we already assumed to be representable in Example 4.8) where we will need a combination

of iteration and case distinction.

5 CASE 21

Example 5.4 (Subtraction) Among others the type of subtraction could be 2nat ! 2nat !

2nat. It is informally de�ned as follows.

minus m z = m

minus m (s n0) = case m of z) z

j (sm0)) (minus m0 n0)

Both arguments of minus must be closed, because we use case distinction over the �rst argument

and iteration over the second.

minus : 2nat! 2nat! 2nat

= �x :2nat: �y :2nat: it hnat 7! (2nat! 2nat)i y

h z 7! �m :2nat: m

j s 7! �n : (2nat! 2nat):

�m :2nat: case h2natim

h z) box z

j s) �m0 :2nat: (n m0)ii x

Case is not restricted to range over atomic types only. Using case over functional types we show

in the next example how an identity function test can be implemented.

Example 5.5 (Identity test) Below is a function which decides if a parametric function mapping

exp to exp is the identity function or not. The function has type 2(exp! exp)! bool.

id-test E = case E of �x : exp: (app (E1 x) (E2 x))) false

j �x : exp: (lam �y : exp: E x y)) false

j �x : exp: x) true

Following the same idea as above we match in the �rst case F with app : exp ! (exp ! exp)

and returnMa. Instead of just boxing the arguments of app we must be more careful because those

arguments might contain the free variable which was introduced by the case subject. In fact every

argument of app must be closed under this variable: The objects to be expected by Ma have hence

the form �x : exp: E1 and �x : exp: E2, both of type exp ! exp. Since x was the only free variable

which might occur in E1 or E2 we also know that both �-expressions are closed. Hence they can

be boxed. The type of Ma is therefore 2(exp! exp)! 2(exp! exp)! 2bool.

A very similar argument can be applied to determine the type of Ml, which is the match for

lam : (exp ! exp) ! exp. x can occur free in the body E of the �-expression, hence Ml will be

passed the boxed object �x : exp: E which gives Ml the type 2(exp! (exp! exp))! 2bool.

It should not be forgotten that there is also a third case to be considered. x can occur as

a pseudo constructor in the body of the case subject. Here again as in the iterator case, the

matching objects for pseudo constructors are not given immediately, but instead the result of case

is a function expecting the match objectMx for the pseudo constructor: Mx must be of type 2bool.

Let us return to the previous example:

Example 5.5 (Identity test using case) The identity test function is hence represented as fol-

lows.
id-test : 2(exp! exp)! 2bool

= �F :2(exp! exp): case hbooli F

h app) �E1 :2(exp! exp): �E2 :2(exp! exp): box false

j lam) �E :2(exp! exp! exp): box falsei (box true)

22 5 CASE

In the following we develop two functions to test if an expression from Example 2.5 is a �-

redex or if it is an �-redex. It shows how more than one case construction can be nested, and

demonstrates again how case distinction proceeds over functional objects. To remind the reader �-

and �-reduction are de�ned as follows.

�-reduction: (�x : exp: E1) E2 ; [E2=x](E1)

�-reduction: �x : exp: (E x) ; E where x does not occur free in E

�x : exp: E1 E2 is called a � redex, �x : exp: (E x) is called a �-redex if x does not occur free in E.

These examples can be modi�ed to implement the reduction.

Example 5.6 (�-redex test) The �-redex test function has type 2exp ! 2bool and can infor-

mally be de�ned as follows.

beta-test F = case F of (lam E)) false

j (app E1 E2)) case E1 of (lam E0)) true

j (app E0

1
E0

2
)) false

Its representation in our calculus is hence:

beta-test : 2exp! 2bool

= �F :2exp: case h2booli F

h lam) �E :2(exp! exp): box false

j app) �E1 :2exp: �E2 :2exp:

case h2booli E1

h lam) �E0 :2(exp! exp): box true

j app) �E0

1
:2exp: �E0

2
:2exp: box falseii

Example 5.7 (�-redex test) The function to decide if a given expression is a �-redex is more

di�cult to de�ne. Clearly, it will have type 2exp! 2bool. The main di�culties arise because the

decision cannot simply be made by considering the structure of the expression, but we must ensure

the side condition for �-redices. Fortunately we already de�ned the functions const and id-test

which come handy for the informal de�nition of the �-redex test.

eta-test F = case F of

(lam E)) case E of �x : exp: (lam �y : exp: E0 x y)) false

j �x : exp: (app (E0

1
x) (E0

2
x)))

(and (const E0

1
) (id-test E0

2
))

j �x : exp: x) false

j (app E1 E2)) false

Its representation in our calculus is hence:

eta-test : 2exp! 2bool

= �F :2exp:

case h2booli F

h lam) �E :2(exp! exp):

case h2booli E

h lam) �E0 :2(exp! exp! exp): box false

j app) �E0

1
:2(exp! exp): �E0

2
:2(exp! exp):

(and (const E0

1
) (id-test E0

2
))i (box false)

j app) �E1 :2exp: �E2 :2exp: (box false)i

5 CASE 23

We begin now with the formal discussion of the case construct: Di�erently from iteration

which traverses the entire structure of the subject, case only recurses down to the head constructor

of the subject leaving possible arguments aside. The subject for selection is always of the form

�x1 : B1: ::�xm : Bm: c M1::Mn with a head constructor c of type B0. Operationally speaking,

during the process of selection, the head constructor is replaced by an object M representing the

computational content of the applying case. At a �rst glance one might suspect that M 's type

is B0

1
! :: ! B0

n ! A where the B0

i's are the argument types of c and A is the result type of

the case. This is not powerful enough. Since case distinction requires its subject to be closed, no

further case distinction could be performed over any of the objects M1::Mn. To solve this dilemma

we close each argument Mi by abstracting over each variable which might possibly occur free in

it. It should be clear that all those variables can be determined because each Mi is a subobject of

the case subject. This allows us to �nally close the newly constructed object with a box. To make

this more formal we de�ne a generalized �-abstraction which we call abstraction closure: �f	g:M

stands for a closed object where M is wrapped in �-abstractions de�ned by 	.

De�nition 5.8 (Abstraction closure)

�f�g:M := M

�f	0; x : Bg:M := �f	0g: (�x :B:M)

and its type is de�ned as �f	g: A:

De�nition 5.9 (Abstraction closure type)

�f�g: A := A

�f	; x : A0g: A := �f	g: (A0 ! A)

Returning to our discussion we can now write box (�f	g:Mi) for the abstracted and closed

versions of Mi where 	 is a context accounting for all free variables possibly occuring in Mi. It

follows that this argument closing operation determines the type of M which we discuss next.

In Example 5.5 we encountered the problem to assign types to the arguments of the object Ma

and Ml which represent the computational meaning of the cases app and lam, respectively. We

generalize now this approach which leads to the notion of case types. As pointed out above, the

general form of the canonical case subject is �f	g: c M1::Mn with a head constructor c of type

B0. The type of the case subject is hence �f	g: a for some atomic type a. The set of di�erent

constructors c constitutes all constructors with the same target type a. All pseudo constructors

de�ned in 	 having target type a could also occur in the position of c. Consider now some (pseudo)

constructor c of type B0 where �(B0) = a. Selecting a case for this constructor c means to select

an object Mc | carrying the intended computational meaning for this case. Mc must be function,

which expects as parameters box �f	g:M1... box �f	g:Mm as has be motivated above. Mc's type

can hence be derived from the type of the case subject B = �f	g: a, the result type of case A and

the type of the constructor c : B0. We abbreviate the type by writing C (�f	g: a; A; B0).

De�nition 5.10 (Case types)

C ((�f	g: a); A; a0) :=

�
A if a = a0

a0 otherwise

C ((�f	g: a); A; (B1 ! B2)) := 2(�f	g: B1)! C ((�f	g: a); A; B2)

24 5 CASE

Note, that in the presentation so far �(B) = �(B0) holds. Hence the otherwise case in the

de�nition above does not apply. This changes if we direct our attention to the type of the case

object itself since pseudo constructors must be replaced by variables of case types. That is if

the case subject is of type B = B1 ! ::: ! Bm ! a then the type of the case construct is

C (B;A;B1) ! ::: ! C (B;A;Bm) ! A. It is obvious that there might be pseudo constructor

types Bi which target type is di�erent from a. In those cases, the atomic case types C (B;A;B0)

must be well-de�ned which makes the otherwise clause necessary. In fact those pseudo constructors

can never occur in head position. Even though we wish to omit them from the de�nition of case

types in general | as the following example shows | we do not pursue this idea here, but leave it

to future research.

Example 5.11 (Equality formula test for higher order logic) Consider a function which

returns true if the a higher-order formula is of the form t1 = t2, else false. We call this func-

tion eq-test. The type of this function should be 2((o! i)! o) ! 2bool. Informally we would

write:

eq-test F = case F of

�r :o! i: forall �x :o: F 0 r x) false

�r :o! i: impl (F 0

1
r) (F 0

2
r)) false

�r :o! i: eq (t0
1
r) (t0

2
r)) true

The straightforward representation of this function in our system would be

eq-test : 2((o! i)! o)! (2((o! i)! o)! i)! 2bool

= �F :2((o! i)! o):

case h2booli F

h forall) �F 0 :2((o! i)! i ! o): box false

j impl) �F 0

1
:2((o! i)! o): �F 0

2
:2((o! i)! o): box false

j eq) �t0
1
:2((o! i)! i): �t0

2
:2((o! i)! i): box truei

The type of this representation of eq-test has an unexpected form, we would expect that its type

is 2((o! i)! o) ! 2bool. The reader can convince himself, that the type of eq-test is correct,

and that the second argument type 2((o! i)! o) ! i represents the branch for the pseudo

constructor. The pseudo constructor itself happens to be insigni�cant because it cannot occur

in head position but our system currently does not check this special case for simplicity of the

development below and the proofs in section 7. Thus a dummy argument must be supplied.

The type of case construction case hAiM � is called complete case type C� (B;A;B) where B

is the type of M . C� (B;A;B0) is de�ned for some pure type B0 as follows.

De�nition 5.12 (Complete case type)

C� (B;A; a) := C (B;A; a)

C� (B;A; (B1 ! B2)) := C (B;A;B1)! C� (B;A;B2)

Case distinction is now de�ned similarly to iteration. The result of the selection process |

i.e. executing the case construct | is an object which resembles the (canonical) subject of the

5 CASE 25

case in structure, but the head constant is replaced by some matched object carrying the intended

operational meaning of the selected branch. Even though the subject of iteration is closed before the

selection process, we need to deal with embedded �-abstractions introducing pseudo constructors.

We can simply replace variables x of type B0 by new variables x0 of type C (B;A;B0), where B is

the type of the case subject.

De�nition 5.13 (Match)

Match: � ::= � j (� j c)M) j (� j x) x0)

Initially the domain of a match is a signature containing all constructors whose target type is equal

to �(B). This signature is S(�; �(B)). The form of case follows naturally: We extend the notion

of objects by

M ::= : : : j case hAiM h�i

and extend the typing rules for case. To do so we must introduce a new typing judgment for

matches �: �; � ` � : hB) Ai(�). � is well-typed if it provides an object of case type for every

constant in some signature �.

De�nition 5.14 (Typing judgment for case) extending de�nition 3.1

�;� `M : 2B �;� ` � : hB) Ai(�0)
TpCase

�;� ` case hAiM h�i : C� (B;A;B)

where �0 = S(�; �(B))

TmBase
�;� ` � : hB) Ai(�)

�; � ` � : hB) Ai(�) �; � `M : C (B;A;B0)
TmInd

�;� ` (� j c)M) : hB) Ai(�; c : B0)

To summarize de�nition by cases we return to Example 5.5. As in the iteration case, it is

necessary to �rst de�ne the type of the function, because the subject of case must be closed. For

our example we expect a function as input, which must be passed as subject to case. The result is

bool, which makes it necessary to box it, otherwise it cannot be used as input for other Boolean

operations. Hence id-test has type 2(exp! exp)! 2bool.

The second step is to examine the type B = 2(exp! exp) and the signature � for possible

constructors and pseudo constructors of this type. For id-test we see that only lam, app, and x,

the newly introduced pseudo constructor are candidates for the head position. After determining

the types of the match objects Ml, Ma, and Mx, the objects can be de�ned.

Having done this, a match must be constructed, representing only the constructors from the

signature � and the according case objects (� = lam) Ml; app) Ma). The case construct is

then a function which must be applied to the object Mx.

The operational semantics of case is de�ned by one rule using an auxiliary function which de�nes

the process of selection. The subject of case must be closed. Therefore we can de�ne selection along

its canonical form. The selection process then transforms this canonical object V of type B into

fB) A; �; �g(V) of type C� (B;A;B).

De�nition 5.15 (Selection)

26 5 CASE

fB) A; �; 	g(c) = �(c) (SeConst)

fB) A; �; 	g(x) = �(x) (SeVar)

fB) A; �; 	g(�x :B0: V) = �u :C (B;A;B0): fB) A; �; x) u; (; x : B0)g(V) (SeLam)

fB) A; �; 	g(V1 V2) = fB) A; �; 	g(V1) (box �f	g: V2) (SeApp)

Looking at an arbitrary canonical form of a case subject of type B we recognize that it has

always the form �f	g: c M1::Mn. Performing selection means, to �rst traverse all �-abstractions,

and introducing new variables for the functionality associated with each pseudo-constructor. This

is done by rule SeLam. While traversing the body of the canonical form, each argument Mi must

be closed under 	 and boxed which is expressed by rule SeApp. Eventually the head constructor c

is reached. In the case that c is a constructor, SeConst replaces the constant by the object which is

de�ned in the match �. If c is a pseudo constructor, then it was a variable name, which counterpart

can also be found in the match � by SeVar.

The selection process is triggered by an additional evaluation rule, which de�nes the operational

semantics of case.

De�nition 5.16 (Evaluation judgment) extending de�nition 3.3:

	 ` M ,! box M 0 : 2B � ` M 0
* V 0 : B 	 ` fB) A; �; �g(V 0) ,! V : C� (B;A;B)

EvCase
	 ` case hAi M h�i ,! V : C� (B;A;B)

The reader can now convince himself that the operational semantics yields the expected results

on the examples of this section. This concludes the presentation of core system of the modal

�-calculus. In the next sections, we address the meta-theoretical properties of our system.

6 PRELIMINARY RESULTS 27

6 Preliminary results

In the remainder of the paper we seek to prove that the modal �-calculus we were presenting in the

previous sections is a conservative extension over the simply typed �-calculus from Section 2. This

theorem shows that every object of pure type in our system evaluates to an object of canonical

form in the simply typed �-calculus.

A milestone on the way towards this proof is the canonical form theorem which we present in

the next section. It guarantees, that every object typable by a pure type possesses a canonical

form. As a corollary of the canoncial form theorem we obtain a type preservation result which says

that types are preserved under evaluation.

In the remainder of this paper we will need some more basic technical notions and properties

which we are presenting in this section. Due to the basic character, a lot of the forthcoming lemmas

of this section are very clear and their proofs do not require more than easy inductive arguments.

If appropriate we omit the proof.

6.1 Context

In section 2 we de�ned a context 	 as a list of variables of pure type which we generalized to a

context � representing variables of arbitrary type in section 3. In the following sections it will be

necessary to reason about contexts. The argument will involve extensions of contexts. Since this is

a very standard and basic de�nition we introduce it at this point and show some simple properties

which we need later.

De�nition 6.1 (Context extension) �0 � � :, Context �0 extends context �.

Rules:

CeBase
� � �

�0 � �
CeInd

�0; x : A � �

Note that de�ning a context extension for � subsumes the notion of context extension for pure

contexts 	. We show now four properties which are a direct consequence of this de�nition. First,

it is clear that every context extends the empty context. The proof is done by induction.

Lemma 6.2 (Every context extends the empty context) � � �

Proof: See appendix B. 2

Second, context extension is transitive. This can be easily shown by induction over the structure

of the second �0.

Lemma 6.3 (Transitivity of context extension) If �00 � �0 and �0 � � then �00 � �

Proof: omitted. 2

And third if a context �� extends a union of two contexts, then �� itself can be written as a union of

one of contexts and an extension of the other. This less obvious property is proven by induction.

Lemma 6.4 (Context form) If ��00 � � [�� then ��00 = � [��0 and ��0 � ��

28 6 PRELIMINARY RESULTS

Proof: See appendix B. 2

As fourth and last property of context extension we show that if one context extends another, the

extension remains valid under union with some other context.

Lemma 6.5 (Context union) If ��0 � �� then � [��0 � � [��

Proof: omitted. 2

Without proof we just state that the union with the empty context yields the same context.

Lemma 6.6 (Empty context on the left) � [= 	

Proof: omitted. 2

Recall how the access to a context was de�ned: We write �(x) = A i� we can write � as �1; x 2 A[

�2. To be painstakingly precise we must require that if � itself was a union of two contexts, then

one of the contexts must be written as such a union | we omit the boring proof.

Lemma 6.7 (Context union access) If (� [�0)(x) = A then � = �1; x : A [�2 or �0 =

�0
1
; x : A [�0

2

Proof: omitted. 2

Closely related to contexts are substitutions which we introduce after discussing the typing relation

of our system.

6.2 Typing

The basic property which is needed in the proof of lemma 7.17 in the next section is the admissibility

of weakening for the typing relation. In other words: An extension of the typing context cannot

invalidate typing derivations. The following lemma has two parts, the �rst part discusses weakening

in the modal context, the second weakening in the regular context. We omit the easy proof by

induction.

Lemma 6.8 (Weakening on typing relation)

1. If �;� `M : A and �0 � � then �0; � `M : A

2. If �;� `M : A and �0 � � then �;�0 `M : A

Proof: omitted. 2

Besides weakening we need another important lemma | the substitution lemma which we

present in two di�erent avors. The �rst substitution lemma guarantees, if we replace a variable

from the modal context by a closed object of required type, the result will still be typable.

Lemma 6.9 (Modal substitution lemma)

6 PRELIMINARY RESULTS 29

If �; y : A1; � `M : A2 and �; � `M 0 : A1 then �;� ` [M 0=y](M) : A2

Proof: omitted. 2

The second substitution lemma is very similar to the �rst: It says that if a variable from the

regular context is replaced by an arbitrary object of correct type, then the result will be still

typable.

Lemma 6.10 (Regular substitution lemma)

If �;�; y : A1 `M : A2 and �;� `M 0 : A1 then �;� ` [M 0=y](M) : A2

Proof: omitted. 2

These three lemmas form the basic properties of the typing relation which we need for the

formal discussion of our system. In the next subsection we introduce the notion of substitution

and show some related basic properties.

6.3 Substitution

In Section 3 we described the distinction between the parametric function space A1 ! A2 and the

primitive recursive function space A1) A2 which made a re�nement of context 	 from Section 2

necessary: We introduced the modal context �, whose variables range over closed objects and

the arbitrary context � to replace 	 | the context representing variables of arbitrary type in the

simply typed �-calculus. Contexts and substitutions are closely related. A substitution is de�ned

as follows.

Substitution: % ::= � j %;M=x

Due to the presence of two contexts we carefully distinguish between a modal substitution

� which substitutes closed objects for variables de�ned in a context � and % which substitutes

arbitrary objects for variables de�ned in a context �. We write �; % for such a pair of (necessaily

disjoint) substitutions. Being disjoint means, that � and % do not have any variable names in

common. This is guaranteed, because the context �; � cannot declare the same variable name

twice.

In our system substitutions are only applied to well-typed objects. Moreover a substitution

must substitute something for every free variable in the object. We make this intuition about well-

typed substitutions now more precise by introducing a typing judgment �0; �0 ` (�; %) : (�; �) for

substitutions. �; % can be applied to objects which are well-typed in context �; �. The range of

the substitution �; % are objects which might depend on free variables from �0; �0.

De�nition 6.11 (Typing of substitution judgment)

Rules:

30 6 PRELIMINARY RESULTS

TSBase
�0; �0 ` (�; �) : (�; �)

�0; � `M : A �0; �0 ` (�; %) : (�; �)
TSMod

�0; �0 ` (�;M=x; %) : (�; x : A; �)

�0; �0 `M : A �0; �0 ` (�; %) : (�; �)
TSReg

�0; �0 ` (�; %;M=x) : (�; �; x : A)

Note that substitutions satisfy a modal restriction (rule TSMod) which mirrors the restriction on

typing box . Throughout this paper we can apply a substitution (�; %) satisfying �0; �0 ` (�; %) :

(�; �) to an object M , a term replacement
, or a match � only if

�; � `M : A �;� `
 : h!i(B0) �; � ` � : hB) Ai(B0)

holds, respectively. The result of the application will then be [�; %](M), [�; %](
), or [�; %](�) which

have the following properties, respectively:

�0; �0 ` [�; %](M) : A �0; �0 ` [�; %](
) : h!i(B0) �0; �0 ` [�; %](�) : hB) Ai(B0)

We address now the de�nition of substitution application by starting to de�ne how to access a

substitution %. The de�nition follows similarly to the access of contexts as presentented in Section 2.

First a union operation %1 [%2 is needed.

De�nition 6.12 (Substitution Union)

Rules:

%[� = % (SbuBase)

%1 [(%2;M=x) = (%1 [%2);M=x (SbuInd)

To look up a value of a variable in a substitution we write %(x) which de�nition follows closely the

de�nition of the lookup function for types in a context (De�nition 2.2).

De�nition 6.13 (Substitution access)

Rules:

(%;M=y)(x) =

�
M if x = y

%(x) otherwise
(SbaInd)

To look up the value in a substitution is the �rst step towards the application of a substitution

�; % to an object which we de�ne below. Recall that it is necessary to include both substitutions

in this de�nition because of the distinction between modal and non-modal variables.

De�nition 6.14 (Substitution application:) Let �; % a substitution.

Rules:

6 PRELIMINARY RESULTS 31

[�; %](x) =

�
M if �(x) = M

M if %(x) = M
(SBVar)

[�; %](c) = c (SBConst)

[�; %](�x :A:M) = �x :A: [�; %; x=x](M) (SBLam)

[�; %](M1 M2) = [�; %](M1) [�; %](M2) (SBApp)

[�; %](hM1;M2i) = h[�; %](M1); [�; %](M2)i (SBPair)

[�; %](fstM) = fst [�; %](M) (SBFst)

[�; %](sndM) = snd [�; %](M) (SBSnd)

[�; %](boxM) = box [�; �](M) (SBBox)

[�; %](let box x = M1 inM2) = let box x = [�; %](M1) in [�; x=x; %](M2) (SBLet)

[�; %](case hAiM h�i) = case hAi [�; %](M) h[�; %](�)i (SBCase)

[�; %](it h!iM h
i) = it h!i [�; %](M) h[�; %](
)i (SBIt)

Substitution on replacements
 is de�ned as:

Rules:

[�; %](�) = � (SBOmegaEmpty)

[�; %](
jc 7!M) = [�; %](
) j (c 7! [�; %](M)) (SBOmega)

Substitution on matches � is de�ned as:

Rules:

[�; %](�) = � (SBXiEmpty)

[�; %](� j c)M) = [�; %](�) j (c) [�; %](M)) (SBXi)

Note that the case SBVar is well-de�ned because every variable name which the substitution

process might encounter is de�ned in either � or %. The rules SBLam and SBLet look peculiar

because of the extension of the substitution �; % by x=x. The insight behind this construction is

that we require a substitution to be de�ned on all free variables of a term. x may occur free in

M in the case of SBLam and it may also occur free in M2 in rule SBLet. Writing x=x implicitly

stands for introducing a new variable name x and replacing it for x. We use this notational trick

throughout this report.

A crucial rule in our system is SBBox. Since a boxed term is closed it can only contain variables

representing closed objects and not variables representing arbitrary objects. This is easily veri�ed

by inversion of the TpBox rule because we assume the subject of substitution always to be well-

typed. This means, that % will not be used during the substitution process. Hence we need not

consider it when traversing over a box.

Our imposed requirement that substitutions must substitute all free variables in an object has

further e�ects. It makes it also necessary to explicitly introduce the notion of identity substitutions

32 6 PRELIMINARY RESULTS

because the empty substitution plays the role of an identity substitution only when applied to closed

terms. We hence de�ne identity with respect to a context.

De�nition 6.15 (Identity substitution:) Let � be a context.

Rules:

id� = � (IdEmpty)

id�;x:A = id�; x=x (IdNonEmpty)

It is not di�cult to show that the identity substitution id�; id� is well-typed and hence satis�es

Lemma 6.16 (Well-typedness of identity substitution)

�;� ` (id�; id�) : (�; �)

Proof: omitted. 2

Two di�erent notions of substitution have been used in the presentation of our system so far.

For the evaluation rules EvApp and EvLet, we used a substitution [M1=x](M2) to express that all

occurrences of x must be replaced in M2 by M1. On the other hand we introduced the notion (�; %)

in the most recent discussion. It is necessary to examine how those both notions of substititution

�t together.

Lemma 6.17 (Property of substitutions)

1. [M 0=x]([�; %; x=x](M)) = [�; %;M 0=x](M)

2. [M 0=x]([�; x=x; %](M)) = [�;M 0=x; %](M)

Proof: omitted. 2

Weakening is also admissible for the typing judgment of substitutions. Without proof we just

state the result:

Lemma 6.18 (Weakening on typing substitution relation)

1. If �0; �0 ` (�; %) : (�; �) and �00 � �0 then �00; �0 ` (�; %) : (�; �)

2. If �0; �0 ` (�; %) : (�; �) and �00 � �0 then �0; �00 ` (�; %) : (�; �)

Proof: omitted. 2

By induction we can prove that restricting a well-typed substitution (�; %) to (�; �) is also well-

typed. If the domain of (�; %) is (�; �), the domain of the restricted substitution is clearly (�; �).

Less clear is that we can also restrict the context �0; �0 of the original well-typed substitution to

�0; � because % cannot depend on any variables from �0.

6 PRELIMINARY RESULTS 33

Lemma 6.19 (Modal substitution restriction)

If �0; �0 ` (�; %) : (�; �) then �0; � ` (�; �) : (�; �)

Proof: See appendix B. 2

Another important observation is that if a variable name de�ned in the context �; � is en-

countered while substituting, we can determine the type and the new context of the substituted

object. In the case the encountered variable name is de�ned in the modal context, we can restrict

the second component of the context to �.

Lemma 6.20 (Properties of typing relation for substitutions)

1. If � = (�1; x : A) [�2 and �0; �0 ` (�; %) : (�; �) then �(x) = M and �0; � `M : A

2. If � = (�1; x : A) [�2 and �0; �0 ` (�; %) : (�; �) then %(x) = M and �0; �0 `M : A

Proof: See appendix B. 2

These preparatory results lead us to a general substitution lemma for the typing relation. If an

object M is well-typed in a context for which a substitution is well-de�ned then its application to

M yields an object of the same type as M in the context of the substitution. Since objects are also

de�ned in terms of term replacements and matches we must extend the result to both construction

as we show be induction over the typing relations.

Lemma 6.21 (Substitution lemma for typing relation)

Let �0; �0 ` (�; %) : (�; �), then the following holds:

1. If �;� `M : A then �0; �0 ` [�; %](M) : A

2. If �;� ` � : hB) Ai(�0) then �0; �0 ` [�; %](�) : hB) Ai(�0)

3. If �;� `
 : h!i(�0) then �0; �0 ` [�; %](
) : h!i(�0)

Proof: See appendix B. 2

As corollary we can apply the substitution for typing relation to the identity substitution as

inferred by Lemma 6.16.

Corollary 6.22 (Well-typedness of application of identity substitution)

If �;� `M : A then �;� ` [id�; id�](M) : A

Proof: omitted. 2

It follows now by a short inductive argument that the identity substitution behaves as expected.

Applied to an object M it returns M .

Lemma 6.23 (Identity substitution) Let �, � contexts.

If �;� `M : A then [id�; id�](M) = M

Proof: omitted. 2

34 6 PRELIMINARY RESULTS

6.4 Atomic and canonical forms

For atomic and canonical form judgments there is also a weakening result. The proof goes by

mutual induction over the derivation of atomic and canonical forms. It is straightforward, and we

omit it here.

Lemma 6.24 (Weakening for atomic/canonical forms)

1. If 	 ` V # A and 	0 � 	 then 	0 ` V # A

2. If 	 ` V * A and 	0 � 	 then 	0 ` V * A

Proof: omitted. 2

A slightly more complicated property of atomic and canonical forms is that the type of an

object can be directly inferred from the judgment. With an easy proof by mutual induction over

the derivation of the canonical and the atomic form judgment we prove the following lemma:

Lemma 6.25 (Type preservation of atomic and canonical types)

1. If 	 ` V # B then �; 	 ` V : B

2. If 	 ` V * B then �; 	 ` V : B

Proof: See appendix B. 2

6.5 Evaluation

For the evaluation judgments there exists also a weakening result. The proof goes by induction

over the evaluation derivation. It is so easy that we omit it here.

Lemma 6.26 (Weakening for atomic/canonical forms)

If 	 `M ,! V : A and 	0 � 	 then 	0 `M ,! V : A

Proof: omitted. 2

6.6 Subordination of types

In this subsection we discuss basic properties which are related to the subordination of types.

Recall that the subordination relation accounts for all dependencies which are introduced by the

signature or by the subject type of iteration or case.

The �rst property is needed in some of the lemmas preceeding the canonical form theorem.

We require that the target types are always of atomic type. The proof is easy because intuitively

the target type is de�ned to be the last atomic type occurring in an arbitrarily formed pure type.

Therefore we do not feel too guilty in omitting the proof.

6 PRELIMINARY RESULTS 35

Lemma 6.27 (Properties of target types)

�(B) = a

for some atomic type a.

Proof: omitted. 2

We will also need that a target type of some type B does not change regardless if B is embedded

in some abstraction closure. The proof goes by induction over the context de�ning the abstraction

closure.

Lemma 6.28 (Goal types and abstraction closure types)

�(�f	g: B) = �(B)

Proof: See appendix B. 2

Before we start with the discussion of the subordination we further re�ne the notion of subor-

dination. So far a1 J�;B a2 expresses that objects of type a1 can be used to construct objects of

type a2. In Section 4 we have seen that the subordination relation is not reexive. The simplest

examples are the Booleans from Example 4.6. bool is not recursive, hence it doesn't hold that

bool J�;B bool. A closer look reveals, that the subordination relation for bool is empty. But it is

de�nitely not the case that bool is. To account for this observation we extend the notion of subor-

dination relation. If a JE�;B bool holds, then objects of type a can occur as objects or subobjects

of objects of type bool. We call this the weak subordination relation.

De�nition 6.29 (Weak subordination relation) Let B be a pure type.

a1 JE�;B a2 :, a1 J�;B a2 or a1 = a2

In the remainder of this section we characterize and discuss a few major properties of type

subordination which will prove very useful when we tackle the proof of the canonical form theorem.

First we want to point out that there is a close relationship between source types of a constructor

type, and the subordination relation: This relationship can be characterized by the following

observation: Every source type of the constructor type is trivially subordinated by the goal type of

the constructor. A second important property is a transitivity property of the weak subordination

relation: If a type a1 is subordinated by a type a2 and a2 is weakly subordinated by a type a3, then

a1 is automatically subordinated by a3. Note that this formulation of the lemma is slightly more

stronger than just assuming a2 to be subordinated by a3. In this case the result follows trivially

from the de�nition 4.24 of subordination.

Lemma 6.30 (Properties of subordination) Let c : C 2 �, B a pure type.

1. If a 2 Source(C) then a JB �(C)

2. If a1 JB a2 and a2 JEB a3 then a1 JB a3

36 6 PRELIMINARY RESULTS

Proof: See appendix B. 2

Variables introduced by a context can be interpreted as a set of pseudo constructors or pa-

rameters as we pointed out in Section 4. Since pseudo constructors are variable names which are

represented in a context, we must extend the notion subordination to contexts: For all pseudo

constructors types B0 if the target type �(B0) subordinates a, all source types of B0 must also

subordinate a.

De�nition 6.31 (Subordination on contexts) Let a be an atomic type.

� JB a

	; x : B0 JB a , 	 JB a and if �(B0) JEB a then forall y 2 Source(B0) : y JB a

It will become clear during the proof of the canonical form theorem, how context subordination

is used. Here is what we need for the proof: If a variable x of type B0 is de�ned in a context 	

and 	 JB �(B), then all source types of type B0 are automatically subordinated by the goal type

of of B. The proof is an easy induction over the context 	.

Lemma 6.32 (Properties of context subordination) Let B be a pure type.

If 	 = (1; x : B
0) [2 and 	 JB �(B) then �(B0) JEB �(B) implies that forall y 2 Source(B0):

y JB �(B)

Proof: See appendix B. 2

The next result has to do with pseudo constructor types. By easy induction it can be shown,

that if B0 is a pseudo constructor introduced by a type B, then all source types of B0 must be also

source types of B. This is clear, because every pseudo constructor type corresponds to a domain

type of B and B must be a function type. Every source type of B0 is hence a source type of B.

We omit the proof.

Lemma 6.33 (Subset property of PCT)

Forall B0 2 PCT(B) the following holds:

Source(B0) � Source(B)

Proof: omitted. 2

Pseudo constructor types have also another property. This property has to do with dynamic

type subordination: If a pseudo constructor type B0 of a type B is given, and a is a type which is

immediately subordinated by the target type of B0, then we have a CB �(B0), because every source

type of B0 is also a source type of B. The proof is done by induction over type B.

Lemma 6.34 (Property of dynamic typing)

6 PRELIMINARY RESULTS 37

If B0 2 PCT(B) then a <B0 �(B0) implies a CB �(B0)

Proof: See appendix B. 2

The last three lemmas in this subsection answer an important question which will be raised

in the proof of the canonical form theorem. Without going into details the property we need is

as follows. Assume B;C are two pure types. We must show that if the target type of B is not

subordinated by the target type of C then h!i(C) = C. We will try to shed some light on this

problem. While traversing a subject of type B iteration may encounter constants of type C whose

target type does not occur in the inductive datatype I(�;B) (see Example 4.8, Example 4.5).

This information can already be extracted from the subordination relation. If a constant c of type

C is encountered during the traversal, �(C) J�;B �(B) must hold { as we prove below. If the

reverse (�(B) J�;B �(C)) also holds, �(C) must an element in I(�;B) by de�nition. This might

not always be the case. In Example 4.8 nat =2 I(�; db), in example 4.5 i =2 I(�; o). Constants

with a target type not being an element of the inductive type remain untouched by the process of

elimination. Is the result of the elimination process h!;
i(M) still well-typed? We must require

that ! applied to a constructor type C with target type outside of I(�;B) is mapped to C.

Thus, more formally, we must show that if �(C) =2 I(�;B) then h!i(C) = C. We split this proof

into two parts. The �rst part we present here, that is we show that if �(B) is not subordinated by

�(C) the claim is ful�lled. The second part will be mainly discussed in the proof of the canonical

form theorem but we show an auxiliary result in this section. The idea behind the second part of

the proof is to show that the case \�(C) is not subordinated by �(B)" cannot occur. For the �rst

part of the proof we show two lemmas.

1. If �(B) 6JB �(C) then Source(C) \ I(�;B) = ;

2. If Source(C)\ I(�;B) = ; and �(C) =2 I(�;B) then h!i(C) = C

If the target type of B is not subordinated, then clearly none of its (atomic) source types is a

member of the the inductive datatype. If there would actually be one atomic type, being an

element of the inductive datatype and a source type of C, then this atomic source type would

subordinate the target type of B and hence our assumption would be violated. We show this claim

directly.

Lemma 6.35 (Independence)

If �(B) 6JB �(C) then Source(C) \ I(�;B) = ;

Proof: See appendix B. 2

The second property ensures that if there isn't any source type of C in the domain of a type

replacement, the type replacement does not have any e�ect on C. We show this claim by induction

over the constructor type.

Lemma 6.36 (Properties of Join) Let c : C 2 �, � arbitrary and ` ! : �

If Source(C)\ � = ; and �(C) =2 � then h!i(C) = C

38 6 PRELIMINARY RESULTS

Proof: See appendix B. 2

The auxiliary lemma for the second part states, that if the target type of a constructor type

C does not occur in the inductive datatype I(�;B) but the target type of C is either equal or

subordinated by the target type of B, then it is impossible that �(B) is subordinated by �(C).

Lemma 6.37 (Properties of subordination)

If �(C) =2 I(�;B) and �(C) JEB �(B) then �(B) 6JB �(C)

Proof: See appendix B. 2

This concludes the section of the basic preliminary results. In the next section we will address

the problem of the existence of canonical forms for typed objects.

7 CANONICAL FORM THEOREM 39

7 Canonical form theorem

The aim of this section is to prove the canonical form property of the modal �-calculus. The

main result will be that every object of pure type in a pure context possesses a canonical form.

In our notation this property is expressed as: if �; 	 ` M : B then 	 ` M * V : B. This result

implies the conservative extension property of �2 which we will show in section 9. We prove this

by Tait's method, often called an argument by logical relations or reducibility candidates. In such

an argument we construct an interpretation of types as a relation between objects, in our case a

unary relation. Assume we are trying to establish a property P of all well-typed objects of type

B. In our case P holds if there is an object V s.t. 	 `M * V : B. The proof using logical relation

proceeds then in two steps. In the �rst step the object which should satisfy P must be proven to

be a member in the logical relation. Finally we prove by induction that for every member in the

logical relation the property P holds.

Before we go into details how the logical relation is de�ned, we derive some useful lemmas,

which are necessary for the argument. Some of the following proofs rely on the fact, that canonical

and atomic forms evaluate to themselves. This fact, even though it might seem trivial, requires a

mutual inductive argument: To prove that atomic and canonical forms evaluate to themselves we

require that the notion of evaluation implies somehow the notion of evaluation to a canonical form:

If M evaluates to V and V happens to be canonical, then M evaluates canonically to V . These

properties are expressed by the following

Lemma 7.1 (Self evaluation)

1. If 	 `M ,! V : B and 	 ` V * B then 	 `M * V : B

2. If 	 ` V * B then 	 ` V ,! V : B

3. If 	 ` V # B then 	 ` V ,! V : B

Proof: See appendix C. 2

Another result which seems intuitively clear but must be proven is the following: by de�nition

objects evaluate to other objects under the judgment 	 ` M * V : B. Since this is the judgment

for canonical evaluation, we expect V to be canonical. That this holds is expressed by the next

lemma. Contrary to the intuition, the proof is not straightforward since the notion of conversion to

canonical forms depend on the evaluation judgment. On the other hand, it is also not very sensible

to try to prove that for every object M , 	 ` M ,! V : A implies that V is a canonical form. For

example, consider the signature from example 2.5: It is easy to see that

� ` �x : exp: (�y : exp: y) z ,! �x : exp: (�y : exp: y) z : exp! exp

but it is also clear, that �x : exp: (�y : exp: y) z is not canonical because the body of the �-expression

can be �-reduced. However, it holds when restricted to atomic types:

Lemma 7.2 (Property of evaluation results)

1. If 	 `M * V : B then 	 ` V * B

40 7 CANONICAL FORM THEOREM

2. If 	 `M ,! V : a then 	 ` V # a

Proof: See appendix C. 2

Consider example 2.5 again. The constant app is not a canonical form either. The reason is

that canonical forms are actually objects in �-long �-normal form. app can be easily transformed

into such a form: �x : exp: �y : exp: app x y. According to lemma 7.2 (2) the result of an evaluation

is canonical only if it is an object of atomic type. Nothing is said about functions. Fortunately we

can prove that every object M evaluating to an atomic form V necessarily evaluates to a canonical

form V 0:

Lemma 7.3 (Evaluation to atomic forms implies evaluation to canonical forms)

If 	 `M ,! V : B and 	 ` V # B then 	 `M * V 0 : B for a V 0

Proof: See appendix C. 2

These three lemmas are necessary for some of the proofs below. We address now the de�nition

of the logical relation. Recall that the logical relation is a set of objects satisfying a certain property

speci�ed by a type A and a context 	. For our system we introduce two logical relations. The

logical relations of objects evaluating to some other object, and the logical relation of values. For

the �rst we write 	 ` M 2 [[A]] to express that object M satis�es the relation [[A]] in context 	.

Similary for the logical relation of values. We write 	 ` V 2 jAj meaning that value V satis�es

the relation jAj in context 	. Both relations are de�ned by structural induction over A.

De�nition 7.4 (Logical relation)

	 `M 2 [[A]] :, �; 	 `M : A and 	 `M ,! V : A and 	 ` V 2 jAj

	 ` V 2 jAj :,

Case: A = a and 	 ` V * a

Case: A = A1 ! A2 and either

Case: V = �x :A1:M and for all 	0 � 	: 	0 ` V 0 2 jA1j) 	0 ` [V 0=x](M) 2 [[A2]]

or

Case: 	 ` V # A1 ! A2 and for all 	0 � 	: 	0 ` V 0 * A1) 	0 ` V V 0 2 jA2j

Case: A = A1 � A2 and V = hM1;M2i and 	 `M1 2 [[A1]] and 	 `M2 2 [[A2]]

Case: A = 2A0: V = box M and � `M 2 [[A0]]

Note that the �rst logical relation requires its elements to be well-typed. This is necessary

because our argument requires that all objects in the relation are well-typed as we will see in

Lemma 7.47. 	 ` M 2 [[A]] must imply that M has that type A in �; 	. In lemma 7.19 we show

that this property propagates to the logical relation of values.

7 CANONICAL FORM THEOREM 41

Objects were de�ned in terms of term replacements and matches (see Section 4, Section 5).

Later on in this section we will need to show that every object de�ned in a term replacement or

match is a member of a logical relation. To make our presentation of this circumstance cleaner

and easier to understand we will introduce the notion of logical relations for term replacements.

A term replacement is an element of the logical relation de�ned by a signature � and a context

representing pseudo constructors 	̂, if every object associated with a (pseudo) constructor satis�es

the logical relation de�ned by the type which results from applying the type replacement ! |

de�ned by the iterator object | to the (pseudo) constructor type.

De�nition 7.5 (Logical relation for term replacements) 	+ ~	 `
 2 [[h!i(�; 	̂)]] :,

Case: If 	̂ = � and � = � then
 = �

Case: If 	̂ = � and � = �0; c : B then
 =
0 j c 7!M and 	 `M 2 [[h!i(B)]] and 	 + ~	 `
0 2

[[h!i(�0; �)]]

Case: If 	̂ = 	̂0; x : B then
 =
0 j x 7! u and ~	 ` u 2 [[h!i(B)]] and 	 + ~	 `
0 2 [[h!i(�; 	̂0)]]

The context de�ned for the logical relation of term replacements is split into two parts 	; ~	. 	

represents the context of variables which might occur free in the objects associated with constructors

(note: not pseudo constructors), and ~	 stands for the context of newly de�ned variables which

rename the original pseudo constructors. We must keep both contexts separately, because to prove

lemma 7.46 and lemma 7.43 we de�ne a substitution, which acts as the identity on all variables

de�ned in 	, but not necessarily on ~	. Not distinguishing between both contexts of variables would

mean to discard this information | which we will need.

We have seen that every object in the logical relation [[A]] is well-typed. This property propa-

gates to term replacements. With an easy inductive proof we can show that

Lemma 7.6 (Type preservation for term replacements) If 	 + � `
 2 [[h!i(�; �)]] then

�; 	 `
 : h!i(�)

Proof: See appendix C. 2

Similarly we de�ne the logical relation for matches. A match is an element of the logical

relation de�ned by a signature � and a context representing pseudo constructors 	̂, if every object

associated with a (pseudo) constructor satis�es the logical relation de�ned by the case type of the

(pseudo) constructor type. Because of the same reasons as for the term replacement we de�ne the

logical relation using two contexts: 	; ~	. Here is the de�nition.

De�nition 7.7 (Logical relation for matches) 	 + ~	 ` � 2 [[hB) Ai(�; 	̂)]] :,

Case: If 	̂ = � and � = � then � = �

Case: If 	̂ = � and � = �0; c : B0 then � = �0 j c) M and 	 ` M 2 [[C (B;A;B0)]] and

	+ ~	 ` �0 2 [[hB) Ai(�0; �)]]

Case: If 	̂ = 	̂0; x : B0 then � = �0 j x) u and ~	 ` u 2 [[C (B;A;B0)]] and 	 + ~	 ` �0 2

[[hB) Ai(�; 	̂0)]]

42 7 CANONICAL FORM THEOREM

We have seen that every object in the logical relation [[A]] is well-typed and so is every term

replacement. As we might expect, this property can also be shown for matches. By simple induction

we obtain:

Lemma 7.8 (Type preservation for matches) If 	+ � ` � 2 [[hB) Ai(�; �)]] then �; 	 ` � :

hB) Ai(�)

Proof: See appendix C. 2

We start now with the discussion of the logical relation. The next few lemmas show some useful

properties implied by this de�nition, all necessary to eventually prove the canonical form theorem.

The �rst lemma is a standard weakening lemma for logical relations:

Lemma 7.9 (Weakening for logical relations)

1. If 	 `M 2 [[A]] and 	0 � 	 then 	0 `M 2 [[A]]

2. If 	 ` V 2 jAj and 	0 � 	 then 	0 ` V 2 jAj

Proof: See appendix C. 2

We must extend this result to logical relations for term replacements. Recall that the logical

relation for term replacements is de�ned using two separate contexts 	; ~	. For our purposes it is

enough to prove weakening as an extension of context ~	.

Lemma 7.10 (Weakening for logical relations for replacement)

If 	 + ~	 `
 2 [[h!i(�; 	̂)]] and ~	0 � ~	 then 	 + ~	0 `
 2 [[h!i(�; 	̂)]]

Proof: See appendix C. 2

The logical relation for matches was de�ned analogously to the logical relation of term replace-

ments. As expected the formulation of the weakening property is similar to the previous one.

Lemma 7.11 (Weakening for logical relations for matches)

If 	 + ~	 ` � 2 [[hB) Ai(�; 	̂)]] and ~	0 � ~	 then 	 + ~	0 ` � 2 [[hB) Ai(�; 	̂)]]

Proof: See appendix C. 2

The logical relations of term replacements and matches play a very important role when we

discuss the elimination process. Recall from De�nition 4.28 that this process traverses the structure

of the subject of iteration. Eventually constants or variables will be encountered. We will see in

the proof of Lemma 7.43 that the term replacement
 is then an element of the corresponding

logical relation. The problem reduces to looking up the encountered constant or variable in
. The

attentive reader has probably already recognized that three cases might occur.

7 CANONICAL FORM THEOREM 43

� A constructor has been encountered which is de�ned by
.

� A constructor has been encountered which has not been de�ned by
.

� A pseudo constructor has been encountered which must be de�ned in
.

The third case speaks of \must be de�ned in
" because the subject of iteration was closed, every

traversed �-abstraction has extended
 by an appropriate variable renaming. We discuss now each

of those three cases by showing three lemmas.

If c : B is the encountered constructor which happens to be de�ned in �, the domain of the

logical relation for replacement, then h!;
i(c) is of correct type and in the logical relation [[h!i(B)]].

Lemma 7.12 (Access to logical relations for replacements I) If � = �1; c : B [�2 and

	+ ~	 `
 2 [[h!i(�; 	̂)]] then 	 `M 2 [[h!i(B)]] and M = h!;
i(c)

Proof: See appendix C. 2

In the case that c : B is not de�ned in this signature, then
(c) is unde�ned.

Lemma 7.13 (Access to logical relations for replacements II) If �(c) is unde�ned and

	+ ~	 `
 2 [[h!i(�; 	̂)]] then
(c) is unde�ned

Proof: See appendix C. 2

In the case that the traversal of the iteration encountered a pseudo constructor x : B de�ned in 	̂,

x is being renamed by the term replacement to a new variable name u, which happens to be an

element of [[h!i(B)]].

Lemma 7.14 (Access to logical relations for replacements III) If 	̂ = 	̂1; x : B[̂2 and

	 + ~	 `
 2 [[h!i(�; 	̂)]] then ~	 ` u 2 [[h!i(B)]] and ~	 = ~	1; u : h!i(B) [~	2 and u =

h!;
i(x)

Proof: See appendix C. 2

We have a very similar situation for matches. Recall from De�nition 5.15 that the process of

selection traverses the subject of case to �nd its head constructor. In the proof of Lemma 7.46 we

will have that � is in the logical relation of matches. Thus we must look up the head constructor

in �. Contrary to the term replacement only two cases can occur, because the case object must

have been well-typed.

� A constructor is the head constructor which is de�ned in �

� A pseudo constructor is the head constructor which is de�ned in �.

We discuss now each of the cases by showing two lemmas. If c : B0 is the head constructor, it is

accounted for in � and fB) A; �; 	g(c) is of correct type and an element in the logical relation

[[C (B;A;B0)]].

Lemma 7.15 (Access to logical relations for matches I) If � = �1; c : B
0[�2 and 	+ ~	 `

� 2 [[hB) Ai(�; 	̂)]] then 	 ` M 2 [[C (B;A;B0)]] and M = fB) A; �; 	0g(c) for an

arbitrary 	0.

44 7 CANONICAL FORM THEOREM

Proof: See appendix C. 2

On the other hand, if x : B0 is the head constructor, it is also accounted for in � and fB)

A; �; 	g(x) is of correct type and an element in the logical relation [[C (B;A;B0)]].

Lemma 7.16 (Access to logical relations for matches II) If 	̂ = 	̂1; x : B
0 [̂2 and 	 +

~	 ` � 2 [[hB) Ai(�; 	̂)]] then ~	 ` u 2 [[C (B;A;B0)]] and ~	 = ~	1; u : C (B;A;B
0) [~	2 and

u = fB) A; �; 	0g(x) for an arbitrary 	0.

Proof: See appendix C. 2

The principal lemmas we need for the proof of the canonical form theorem are the following.

Every well-typed object is an element of the logical relation de�ned by its type, and every element

of a logical relation has a canonical form. More formally:

1. If �; 	 `M : A then 	 `M 2 [[A]]

2. If 	 `M 2 [[B]] then 	 `M * V : B

In this presentation we �rst show the second lemma. To prove it, we must generalize its

formulation. The proof depends on the fact that atomic objects of pure types B are always in the

logical relation of values jBj. By mutual induction we can then show the following lemma:

Lemma 7.17 (Logical relations and canonical forms)

1. If 	 `M 2 [[B]] then 	 `M * V : B

2. If 	 ` V # B then 	 ` V 2 jBj

Proof: See appendix C. 2

In Section 3 we introduced arbitrary types opposed to pure types from Section 2. We show now

by an easy inductive argument that if an object is atomic of some type A in a pure context, then

A must be necessarily pure.

Lemma 7.18 (Types of atomic objects are pure)

If 	 ` V # A then A is pure.

Proof: See appendix C. 2

This lemma is necessary for the proof of the well-typedness of objects in the logical relation of

values, as briey discussed above. We have seen that every object in [[A]] is of type A. We show

now that every object in relation jAj is also well-typed.

Lemma 7.19 (Well-typedness of logical relations)

7 CANONICAL FORM THEOREM 45

If 	 ` V 2 jAj then �; 	 ` V : A

Proof: See appendix C. 2

But this is not the only property objects satisfying relation jAj enjoy. Based on the self evalu-

ation lemma 7.1, it is now easy to show that every object in jAj evaluates to itself. The proof goes

by structural induction over type A.

Lemma 7.20 (Logical relations: Self evaluation of values)

If 	 ` V 2 jAj then 	 ` V ,! V : A

Proof: See appendix C. 2

A direct consequence of these two lemmas is that every object in jAj is also an object in [[A]].

This is a result which we use quite often in proofs of the subsequent lemmas. We state this result

in form of a lemma:

Lemma 7.21 (Logical relation subsumption)

If 	 ` V 2 jAj then 	 ` V 2 [[A]]

Proof: See appendix C. 2

Recall that all the lemmas which are presented here serve the purpose to prove the �rst of both

lemmas necessary for the proof of the canonical form theorem. We shall now introduce more pieces

to complete the mosaic. To prove the �rst lemma we need to show that every typable object of

type A satis�es the relation [[A]]. Consider a typing derivation ending with the typing rule TpApp.

We see that the result object of the rule is an application M1 M2. M1 is a function, M2 is the

parameter object of suitable type. The next lemma shows that it is legitimate to establish a similar

way of reasoning with logical relations. If M1 satis�es the logical relation created by a function

type A2 ! A1 and M2 satis�es the logical relation created by the domain of the function type,

namely [[A2]], then (M1 M2) satis�es [[A1]]. The proof of this lemma is fairly straightforward and

makes use of lemma 7.17 and lemma 7.2. This property will be very useful for the proof of the

canonical form theorem.

Lemma 7.22 (Logical relation is closed under application)

If 	 `M1 2 [[A2 ! A1]] and 	 `M2 2 [[A2]] then 	 `M1 M2 2 [[A1]]

Proof: See appendix C. 2

Recall that the proof of the canonical form theorem is performed in two steps.

1. If 	 `M 2 [[B]] then 	 `M * V : B

46 7 CANONICAL FORM THEOREM

2. If �; 	 `M : A then 	 `M 2 [[A]]

We already proved the �rst step by slightly generalizing the lemma. The second lemma cannot be

proven without generalization either. The problem we encounter when we try to prove it directly

is that the context 	 may grow during the typing process (TpLam). It is also possible that the

modal context which is empty in the current formulation of the lemma does not remain empty

throughout the typing derivation (TpLet).

To successfully prove this lemma we must generalize its formulation by using substitutions.

Given a typing derivation �; � `M : A and a substitution for �; �, where the objects introduced by

the substitution might depend on free variables from a context 	, we can show that the substituted

object [�; %](M) is indeed an object in [[A]]. The desired result is a consequence of this generalized

lemma using the identity substitution introduced by de�nition 6.15.

We are still far away from proving this generalized lemma, some key lemmas must still be

developed and proven. In the remainder of this section, we address the following issues: First we

introduce logical relations for contexts. Substitutions are elements of such a logical relation. Some

more technical results are necessary, which will be discussed right after this de�nition. Second,

we need auxiliary lemmas for the elimination and the selection judgment. These auxiliary lemmas

obviously depend on type replacements and (complete) case types. Some additional reasoning is

necessary to show that the treatment of constants during the elimination process does not destroy

the type preservation property. Many lemmas which are needed to establish this claim have been

already discussed in section 6. Finally we assemble all these pieces to obtain a generalized version

of the second half of the canonical element theorem.

Let us start with the description of the basic ingredients. The �rst ingredient is the notion

of logical relation for modal and arbitrary contexts. It follows from the previous discussion, that

substitutions are necessary to generalize the formulation of the lemma in question. We are given a

typing derivation D :: �; 	 `M : A. Some subderivation of D might be of the form �; � `M 0 : A0.

Hence M 0 can contain free variables from � and from �. The logical relation which we de�ne now

contains all substitutions �; %, with the following properties:

1. If �(x) = M where x : A is de�ned in the context �, then M must be a closed object of type

A. For our purposes we also must require that M is actually a closed object satisfying [[A]].

2. If %(x) = M where x : A is de�ned in the context �, then M must be an object satisfying

jAj.

The formal de�nition of logical relation for modal/arbitrary contexts follows directly. We de�ne

three logical relations. The �rst two correspond to these two properties, the third is a combination

of both.

De�nition 7.23 (Logical relation for modal contexts) ` � 2 [[�]] :,

Case: If � = � then � = �

Case: If � = �0; x : A then � = �0;M=x and � `M 2 [[A]] and ` �0 2 [[�0]]

Di�erently from this de�nition, the second logical relation must account for the fact that objects

occurring in the substitution may depend on free variables from a context 	. Hence the context 	

must be involved in the de�nition.

7 CANONICAL FORM THEOREM 47

De�nition 7.24 (Logical relation for regular contexts) 	 ` % 2 j�j :,

Case: If � = � then % = �

Case: If � = �0; x : A then % = %0; V=x and 	 ` V 2 jAj and 	 ` %0 2 j�0j

As described earlier in this paper, we prefer to see the context � and the context � as a combined

context. In this sense, it is useful to de�ne a combined logical relation, which contains both, the

logical relation for � and the one for �. Here is the formal de�nition.

De�nition 7.25 (Logical relation for combined contexts)

	 ` �; % 2 [�; �] i� ` � 2 [[�]] and 	 ` % 2 j�j

Weakening must be also proven for the logical relation for modal/regular context. We omit the

easy proof by induction:

Lemma 7.26 (Weakening on logical relation on contexts)

1. If 	 ` % 2 j�j and 	0 � 	 then 	0 ` % 2 j�j

2. If 	 ` �; % 2 [�; �] and 	0 � 	 then 	0 ` �; % 2 [�; �]

Proof: omitted. 2

The logical relation for contexts was de�ned to make a generalization of the second part of the

canonical form theorem feasible. Looking at the typing rules in Section 3, Section 4, and Section 5,

we observe that the new � in each premiss is always an extension of the � in the conclusion.

But this doesn't hold for the context �. In the rule TpBox for example we see, that the context

� is discarded. Let �; % be a substitution satisfying the logical relation [�; �] where �; � is the

context of some typing derivation ending with rule TpBox. The question which arises immediately

is whether �; % can be restricted in some way to be also an element of [�; �]? As side condition we

must require 	 to be empty | as will become clear when we discuss the case TpBox in lemma 7.47.

The answer is yes: Choose the new substitution to be �; �. The proof again is an easy induction.

Lemma 7.27 (Modal substitution restriction)

If 	 ` �; % 2 [�; �] then � ` �; � 2 [�; �]

Proof: See appendix C. 2

We address now the question if every substitution �; % which satis�es a logical relation [�; �] is

well-formed with respect to De�nition 6.11. The answer is yes, the proof is easy if we consider the

modal part �; � and the regular part �; % one by one. We show this property in four parts. First we

show that �; � is well-formed in �; �:

Lemma 7.28 (Well-typedness of modal substitutions in logical relations)

48 7 CANONICAL FORM THEOREM

If ` � 2 [[�]] then �; � ` (�; �) : (�; �)

Proof: See appendix C. 2

Then we show that �; % is well-formed in �; �. It should be clear that the formulation of this lemma

must involve 	 because the objects de�ned by % might contain free variables from 	.

Lemma 7.29 (Well-typedness of regular substitutions in logical relations)

If 	 ` % 2 j�j then �; 	 ` (�; %) : (�; �)

Proof: See appendix C. 2

To assemble these both results, we must prove a combination lemma: If �; � is well-formed with

respect to �; � and �; % is well-formed with respect to �; � in a context 	, then surely �; % should

be well-formed with respect to �; � in context 	. This is formalized and proved by the following

lemma.

Lemma 7.30 (Combination of two substitutions)

If �; � ` (�; �) : (�; �) and �; 	 ` (�; %) : (�; �) then �; 	 ` (�; %) : (�; �)

Proof: See appendix C. 2

The previous three lemmas are now being summarized to form the �nal result. Every substitution

in a logical relation [�; �] is well-typed with respect to context (�; �).

Lemma 7.31 (Well-typedness of substitutions in logical relations:)

If 	 ` �; % 2 [�; �] then �; 	 ` (�; %) : (�; �)

Proof: See appendix C. 2

A rather technical but intuitively clear lemma is the following: If a substitution satisfying the

logical relation j�;�j is given and x : A is de�ned in the modal context �, then the lookup of x in

� will return an object M which fortunately happens to satisfy [[A]].

Lemma 7.32 (Properties of logical relation for modal contexts)

If � = (�1; x : A) [�2 and ` � 2 [[�]] then �(x) = M and � `M 2 [[A]]

Proof: See appendix C. 2

A similar result holds for x : A being de�ned in the context �.

7 CANONICAL FORM THEOREM 49

Lemma 7.33 (Properties of logical relation for regular contexts)

If � = (�1; x : A) [�2 and 	 ` % 2 j�j then %(x) = M and 	 `M 2 jAj

Proof: See appendix C. 2

In the following discussion we would like to consider the substitution �; % as a unit to simplify the

presentation of the proofs. Hence we rephrase the previous two statements by the following lemma.

Lemma 7.34 (Properties of logical relation for contexts)

1. If � = (�1; x : A) [�2 and 	 ` �; % 2 [�; �] then �(x) = M and � `M 2 [[A]]

2. If � = (�1; x : A) [�2 and 	 ` �; % 2 [�; �] then %(x) = M and 	 `M 2 jAj

Proof: See appendix C. 2

For the same purpose we state the trivial fact of how to extend the regular part of such a substitution

pair by some value V , element of the logical relation jAj.

Lemma 7.35 (Extending logical relations for contexts) If 	 ` �; % 2 [�; �] and 	 ` V 2

jAj then 	 ` �; %; V=x 2 [�; �; x : A]

Proof: See appendix C. 2

After this excursion into the basics of well-typed substitutions and their membership to logical

relations, we focus now again on the proof of the canonical form theorem. With logical relations

for contexts we are can generalize the lemma leading eventually to the canonical form theorem:

If �; � `M : A and 	 ` �; % 2 [�; �] then 	 ` [�; %](M) 2 [[A]]

To obtain the result we are interested in we must use the identity substitution of context 	 which

supposedly is an instance of [�;] and apply lemma 7.34. It is necessary to prove that 	 ` �; id	 2

[�;].

Because of the de�nition of logical relation for context [�;] two lemmas are necessary to prove

this lemma. First we show as an auxiliary result that for every 	, 	 ` id	 2 j	j. This is not

trivial, because the proof relies on lemma 7.17.

Lemma 7.36 (Identity substitution for regular context)

For all 	 the following holds: 	 ` id	 2 j	j

Proof: See appendix C. 2

As a second step we bring this lemma into the desired form: 	 ` �; id	 2 [�;].

Lemma 7.37 (Identity substitution for context)

50 7 CANONICAL FORM THEOREM

For all 	 the following holds: 	 ` �; id	 2 [�;]

Proof: See appendix C. 2

Slowly we are approaching the canonical form theorem. Recall that we are still trying to show

that �; 	 ` M : A implies that 	 ` M 2 [[A]]. The logical relation for contexts, properties of the

identity function have been the �rst steps towards this lemma. Two more challenging problems

must be tackled before we can prove it: the role of elimination and selection. This stems from

the conclusion of the lemma: An iterator or a case object can only then be in the logical relation

[[A]] if they evaluate to a value. For the iterator this implies that the process of elimination must

be \well-behaved", for case it means that the process of selection must generate an object which

evaluates to a value.

The elimination process is evoked by the evaluation of an iterator by the rule EvIt. Recall that

elimination traverses the structure of the canonical form of the subject of iteration, by looking up

each of the (pseudo) constructors in the term replacement
. Under the assumption that
 is an

element of the logical relation of the term replacement (+ ~	 `
 2 [[h!i(�0; 	̂)]]) we can now

state the missing link to the canonical form theorem for the iterator. 	̂ represents the set of pseudo

constructors possibly occurring in the canonical object, ~	 contains their images under the term

replacement
, and 	 is the context in which the iterator object is well-typed.

If 	 + ~	 `
 2 [[h!i(�0; 	̂)]] and �0 = S�(�; I(�;B))

1. If 	̂ ` V * B0 then 	 [~	 ` h!;
i(V) 2 [[h!i(B0)]]

From our experience with other proofs in this paper it can be easily seen that we must generalize

this property before we can prove it. Canonical forms depend mutually on atomic forms, hence as

�rst approximation we generalize the statement:

If 	 + ~	 `
 2 [[h!i(�0; 	̂)]] and �0 = S�(�; I(�;B))

1. If 	̂ ` V # B0 then 	 [~	 ` h!;
i(V) 2 [[h!i(B0)]]

2. If 	̂ ` V * B0 then 	 [~	 ` h!;
i(V) 2 [[h!i(B0)]]

But even this generalization does not go far enough. The attentive reader might already suspect

that the generalized formulation of the property is not adequate to provide a strong enough induc-

tion hypothesis to actually prove the lemma. The problem lies in the rule CanLam which introduces

new pseudo constructors into the set 	̂. To solve this problem we introduce a substitution �; id	[%

which satis�es the logical relation [[�; 	[~]]. Please note, that is substitution acts as the identity

substitution on all variables from 	. This is a crucial property in the argument because it allows us

to use the strengthening lemma which states that if a substitution acts as the identity function on

all free variables of a term M , then its application to M yields M . We call it strengthening lemma

because the domain of the substitution might contain further variables which are not mapped to

themselves.

Lemma 7.38 (Strengthening lemma)

Let �̂; � [�� [�̂ ` (id
�̂
; id� [%[id

�̂
) : (�̂; � [~� [�̂)

7 CANONICAL FORM THEOREM 51

1. If �̂; � [�̂ `M : A then M = [id
�̂
; id� [% [id

�̂
](M)

2. If �̂; � [�̂ ` � : hB) Ai(�0) then � = [id
�̂
; id� [%[id

�̂
](�)

3. If �̂; � [�̂ `
 : h!i(�0) then
 = [id
�̂
; id� [% [id

�̂
](
)

Proof: See appendix C. 2

The trick to use the identity function in the formulation of the lemma leaves us to prove the

following lemma for the iterator:

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	 + ~	 `
 2 [[h!i(�0; 	̂)]] and �0 = S�(�; I(�;B))

1. If 	̂ ` V # B0 then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]]

2. If 	̂ ` V * B0 then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]]

This formulation of the lemma is very close to the version we will �nally prove. But we cannot

prove it directly. The reason for this has already been mentioned in Section 6. Not every constructor

c : C which is encountered during the traversal is an element of �0: constructors whose target type

�(C) is not in I(�;B) are replaced by themselves according to the de�nition of ElConst. Being not

an element in I(�;B) can have two possible reasons:

1. �(C) 6J�;B �(B)

2. �(B) 6J�;B �(C)

In the �rst case we are done, as a consequence of lemma 6.35 and lemma 6.36 from section 6.

All what remains to show is that the second case cannot occur. We prove this property as by

generalizing the auxiliary lemma for iterator further. The idea is to show that if during the

elimination process a canonical form V of type B0 is encountered then �(B0) JB �(B) holds.

To accomplish this we de�ne three conditions which are formulated as preconditions and post-

conditions for the elimination process | which we will add into the formulation of the auxiliary

lemma for iterator. We distinguish between two preconditions: One for the case that the en-

countered object is canonical and for the case that the object is atomic. If an atomic form is an

application, then ElApp must be applied. To show that the precondition for the second branch

holds, we must de�ne a postcondition, which is valid after the iteration of the �rst premiss termi-

nates. The �rst premiss of AtApp is always atomic hence it is enough to establish the post condition

only for the atomic case.

De�nition 7.39 (Atomic precondition for elimination) Let B an arbitrary pure type:

Pre#B (; B0) :, �(B0) JEB �(B) and 	 JB �(B)

The �rst part of this de�nition guarantees the weak subordination of �(B0) and �(B). We

cannot assume strong subordination, because elimination can be applied to non-inductive types.

The second part of this precondition is necessary because the precondition must imply the postcon-

dition, which �nally might be used to imply the precondition for canonical form elimination. The

precondition for canonical forms is stronger then the one for atomic forms. It states in addition

that for every pseudo constructor, all source types are subordinated by �(B), as long as the pseudo

constructor can be used in the de�nition of the object.

52 7 CANONICAL FORM THEOREM

De�nition 7.40 (Canonical precondition for elimination) Let B arbitrary pure type:

Pre*B (; B0) :,

Pre#B (; B0) and forall B00 2 PCT(B0) :

if �(B00) JEB �(B) then forall y 2 Source(B00) : y JB �(B)

The postcondition for atomic form elimination provides that every source type of a type of the

atomic object to be eliminated is actually subordinated by the goal type of B | which might be

very di�erent from B0.

De�nition 7.41 (Atomic postcondition for elimination) Let B arbitrary pure type:

Post#B (B0) :, forall y 2 Source(B0) : y JB �(B)

The proof of the auxiliary lemma for iterator will be by induction over the atomic or canonical

structure of the elimination subject. The following lemma shows that preconditions and postcon-

ditions imply each other in a suitable way as necessary to perform the inductive argument. For

this purpose recall the de�nition of atomic and canonical forms from De�nition 2.6. If we have a

derivation ending in an application of AtVar and the atomic precondition holds then we must show

that the postcondition holds. The same holds for a derivation ending with AtConst. In the case of

application (AtApp) we encounter the following situation. Let D be a derivation ending in

D1

	 ` V1 # B1 ! B2

D2

	 ` V2 * B1

AtApp
	 ` V1 V2 # B2

By assumption we know that Pre#B (; B2) holds. The application of the induction hypothesis to

D1 requires that Pre #B (; B1 ! B2) holds (to be proven). Finally for this case, the application

of the induction hypothesis to D2 requires that Pre*B (; B1) holds. For this proof we fortunately

can assume Post#B (B1 ! B2).

A complete list of all necessary implications is summarized by the following lemma. The �rst

statement is needed for AtVar, the second for AtConst. The third and the forth are necessary

for AtApp. CanAt doesn't require any special considerations, since the canonical precondition is

stronger then the atomic one. The �fth statement makes the case CanLam go through. And �nally

the last fact provides the necessary information to ensure that the initial precondition holds (see

Lemma 7.47).

Lemma 7.42 (Preservation of Preconditions and Postconditions)

1. Pre#B (; B0) and 	(x) = B0 then Post#B (B0)

2. Pre#B (; B0) and �(c) = B0 then Post#B (B0)

3. Pre#B (; B2) implies Pre#B (; B1 ! B2)

4. Pre#B (; B2) and Post#B (B1 ! B2) implies Pre*B (; B1) and Post#B (B2)

7 CANONICAL FORM THEOREM 53

5. Pre*B (; B1 ! B2) implies Pre*B (; x : B1; B2)

6. For all pure types B: Pre*B (�; B)

Proof: See appendix C. 2

Now all ingredients for the formulation of the auxiliary lemma for iterator are prepared. By

inserting preconditions and postconditions for atomic and canonical forms into the formulation we

obtain the auxiliary lemma for iterator which, as expected, is proven by mutual induction over

atomic and canonical forms. The proof relies on the results from lemma 7.42.

Lemma 7.43 (Auxiliary lemma for iterator)

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	+ ~	 `
 2 [[h!i(�0; 	̂)]] and �0 = S�(�; I(�;B))

1. If 	̂ ` V # B0 and Pre #B (̂; B0) then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]] and

Post#B (B0)

2. If 	̂ ` V * B0 and Pre*B (̂; B0) then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]]

Proof: See appendix C. 2

Similarly to the development of the auxiliary lemma for iterator we can prove an auxiliary

lemma for case, which shows that the selection process \behaves" well. The selection process

seems to be much easier then the elimination process, because only the head constructor selects an

object, its arguments must be closed and boxed. Thus, before discussing the auxiliary lemma for

case we present a result which shows how to close and box arguments.

For this purpose we must show that a canonical object of type B is an element of the logical

relation [[B]]. For the same reasons as above, we must prove this result also for atomic objects.

The possible introduction of pseudo constructors by CanLam makes it necessary that we introduce

a substitution �; %, replacing all pseudo constructors in 	 by some object. The substitution is

assumed to satisfy [�;]. We need this result for the proof of Lemma 7.45

Lemma 7.44 (Every canonical element is member of the logical relation)

1. If 	 ` V # B and 	0 ` �; % 2 [�;] then 	0 ` [�; %](V) 2 [[B]]

2. If 	 ` V * B and 	0 ` �; % 2 [�;] then 	0 ` [�; %](V) 2 [[B]]

Proof: See appendix C. 2

We now present the �nal preparatory lemma for the auxiliary lemma for case. Consider rule

SeApp from de�nition 5.15. The selection judgment applied to an application of the form V1 V2
selects some object for M1 �rst and constructs a boxed abstraction closure over object V2. The

result of the selection process is then the application of M1 to this newly constructed object. Note

that V2 can contain any pseudo constructor introduced by preceding �-abstractions. We show now

that we can close V2 under all these variables by using abstraction closures.

54 7 CANONICAL FORM THEOREM

Lemma 7.45 (Properties of transformation types)

If 	 ` V * B then � ` �f	g: V 2 [[�f	g: B]]

Proof: See appendix C. 2

We can now use the previous four lemmas to prove the auxiliary lemma for case. Recall that the

overall goal is a result which is very similar to the iterator. From the assumption that the match

� satis�es 	 + ~	 ` � 2 [[hB) Ai(�0; 	̂)]] we need to prove that the selection process generates

an object which satis�es the logical relation [[C� (B;A;B)]]. Recall from the formulation of the

auxiliary lemma of the iterator that 	̂ represents the set of pseudo constructors possibly occurring

in the canonical object, ~	 contains their images under the match �, and 	 is the context in which

the case object is well-typed.

If 	 + ~	 ` � 2 [[hB) Ai(�0; 	̂)]] and �0 = S(�; �(B)) then

1. If 	̂ ` V * B0 then 	 [~	 ` fB) A; �; 	̂g(V) 2 [[C� (B;A;B0)]]

Unfortunately, this formulation of the lemma cannot be proven without further generalization.

The �rst generalization step has to do with the mutual dependency of atomic and canonical forms.

We have to be more careful then in the iterator case because atomic objects are only of \case type"

but not of \complete case type".

If 	 + ~	 ` � 2 [[hB) Ai(�0; 	̂)]] and �0 = S(�; �(B)) then

1. If 	̂ ` V # B0 then 	 [~	 ` fB) A; �; 	̂g(V) 2 [[C (B;A;B0)]]

2. If 	̂ ` V * B0 then 	 [~	 ` fB) A; �; 	̂g(V) 2 [[C� (B;A;B0)]]

Following the example of the iterator, we encounter exactly the same problem here. The rule

CanLam extends the set of pseudo constructors which would prevent the induction hypothesis to

apply in this case. To generalize this lemma more, we use the same trick with the substitution

�; id	 [% as in the iterator case.

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	 + ~	 ` � 2 [[hB) Ai(�0; 	̂)]] and �0 = S(�; �(B))

1. If 	̂ ` V # B0 then 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V)) 2 [[C (B;A;B0)]]

2. If 	̂ ` V * B0 then 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V)) 2 [[C� (B;A;B0)]]

This formulation is very close to the lemma as we prove it. But still the proof doesn't go

through. The problem is the context 	̂0 of pseudo constructors. We must be able to recover

the information that �f	̂g: �(B) = B. To make this more formal, we can assume this property

to hold for the atomic case: 	̂ essentially represents B. For the canonical case, we can assume

that 	̂ represents the initial set of domain types of type B. The remaining domain types are

still represented by the type B0: �f	̂g: B0 = B. Another piece of information is needed for the

successful proof: �(B) = �(B0).

7 CANONICAL FORM THEOREM 55

Lemma 7.46 (Auxiliary lemma for case)

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	+ ~	 ` � 2 [[hB) Ai(�0; 	̂)]] and �0 = S(�; �(B))

1. If 	̂ ` V # B0 and �f	̂g: �(B) = B and �(B0) = �(B) then 	 [�	 `

[�; id	 [%](fB) A; �; 	̂g(V)) 2 [[C (B;A;B0)]]

2. If 	̂ ` V * B0 and �f	̂g: B0 = B then 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V)) 2

[[C� (B;A;B0)]]

Proof: See appendix C. 2

This concludes the presentation of the preparatory work. All the ingredients are prepared, we

just have to put them together to obtain the generalized �rst lemma completing the canonical form

theorem. Recall that the proof of the canonical form theorem is performed in two steps | as we

discussed earlier:

1. If 	 `M 2 [[B]] then 	 `M * V : B

2. If �; 	 `M : A then 	 `M 2 [[A]]

The �rst property was already proven in lemma 7.17. We discussed that a generalization of the

second step is necessary. This generalization led to the introduction of logical relations for contexts

with substitutions as their elements. We now prove this generalized version, the centerpiece of this

work. All results obtained so far are needed for the proof of this lemma. The proof is done by

induction over the typing derivation.

Lemma 7.47 (Typing and logical relations)

Let 	 ` �; % 2 [�; �]

1. If �;� `M : A then 	 ` [�; %](M) 2 [[A]]

2. If �;� ` � : hB) Ai(�0) then 	 + � ` [�; %](�) 2 [[hB) Ai(�0; �)]]

3. If �;� `
 : h!i(�0) then 	+ � ` [�; %](
) 2 [[h!i(�0; �)]]

Proof: See appendix C. 2

As the main result of this section both lemmas, namely lemma 7.17 and lemma 7.47 can be

summarized to the canonical form theorem. This theorem says, that every object M of pure type

evaluates to a canonical form. In other words, no matter how complex the form of the object M

is, it may contain �-abstractions, applications, boxes, and lets, it will evaluate to a canonical form,

only containing �-abstractions and applications. Section 9 emphasizes this point again and shows

the usefulness of this result.

Theorem 7.48 (Canonical form theorem)

If �; 	 `M : B then 	 `M * V : B

Proof: See appendix C.

2

56 8 TYPE PRESERVATION THEOREM

8 Type preservation theorem

The canonical form lemma and the corresponding theorem are two very powerful theorems. The

type preservation property of the operational semantics of our system follows as a corollary if we

have one more lemma, namely, that the value of an object is unique. This claim is intuitively

immediate because the form of the object triggers the evaluation rule | which is uniquely de�ned.

The operational semantics and evaluation to canonical forms are mutual dependent, hence the

uniqueness lemma reads as follows.

Lemma 8.1 (Uniqueness of evaluation)

1. If 	 `M * V : A and 	 `M * V 0 : A then V = V 0

2. If 	 `M ,! V : A and 	 `M ,! V 0 : A then V = V 0

Proof: See appendix D. 2

An easy corollary from Lemma 7.47 is now the type preservation theorem guarenteeing that types

are preserved under our operational semantics.

Theorem 8.2 (Type preservation)

If �; 	 `M : A and 	 `M ,! V : A then �; 	 ` V : A

Proof: See appendix D. 2

In the next section we present another corollary from Lemma 7.47: Our calculus for the modal

�-calculus is a conservative extension of the simply typed �-calculus.

9 CONSERVATIVE EXTENSION THEOREM 57

9 Conservative extension theorem

We arrived at the �nal result of this paper: Our calculus is a conservative extension of the simply-

typed �-calculus. By de�nition it is clear the the language of objects and types of the modal

�-calculus extends the formulation of the simply typed �-calculus. It follows quite naturally that

every typing derivation in the simply-typed calculus can be represented in our system: Using the

empty modal context, StpVar must be replaced by TpVarReg, StpConst by TpConst, StpLam by

TpLam, and �nally StpApp by TpApp.

Lemma 9.1 (Typing extension)

If 	 `M : B then �; 	 `M : B

Proof: See appendix E. 2

Let M be an object of pure type B with free variables from a pure context 	. M itself need not be

pure but rather some term in the modal �-calculus including boxes, lets, iterators, and de�nition

by cases. We have seen that M has a canonical form V , and Lemma 7.2 (1) shows that V must be

a term in the simply typed �-calculus.

Theorem 9.2 (Conservative Extension)

If �; 	 `M : B then 	 `M * V : B and 	 ` V * B

Proof: See appendix E. 2

This concludes the discussion of the meta-theoretic properties of the modal �-calculus which

we presented in this paper.

58 10 CONCLUSION AND FUTURE WORK

10 Conclusion and Future Work

We have presented a calculus for primitive recursive functionals over higher-order abstract syn-

tax which guarantees that the adequacy of encodings remains intact. The requisite conservative

extension theorem is technically deep and requires a careful system design and analysis of the

properties of a modal operator 2 and its interaction with function de�nition by iteration and

cases. To our knowledge, this is the �rst system in which it is possible to safely program function-

ally with higher-order abstract syntax representations. It thus complements and re�nes the logic

programming approach to programming with such representations [Mil92, Pfe91].

Our work was inspired by Miller's system [Mil90], which was presented in the context of ML.

Due to the presence of unrestricted recursion and the absence of a modal operator, Miller's system

is computationally adequate, but has a much weaker meta-theory which would not be su�cient for

direct use in a logical framework. The system of Meijer and Hutton [MH95] and its re�nement by

Fegaras and Sheard [FS96] are also related in that they extend primitive recursion to encompass

functional objects. However, they treat functional objects extensionally, while our primitives are

designed so we can analyze the internal structure of �-abstractions directly. Fegaras and Sheard

also note the problem with adequacy and design more stringent type-checking rules in Section 3.4

of [FS96] to circumvent this problem. In contrast to our system, their proposal does not appear

to have a logical interpretation. Furthermore, they neither claim nor prove type preservation or

an appropriate analogue of conservative extension|critical properties which are not obvious in the

presence of their internal type tags and Place constructor.

Our system is satisfactory from the theoretical point of view and could be the basis for a practical

implementation. Such an implementation would allow the de�nition of functions of arbitrary types,

while data constructors are constrained to have pure type. Many natural functions over higher-order

representations turn out to be directly de�nable (e.g., one-step parallel reduction or conversion

to de Bruijn indices), others require explicit counters to guarantee termination (e.g., multi-step

reduction or full evaluation). On the other hand, it appears that some natural algorithms (e.g., a

structural equality check which traverses two expressions simultaneously) are not implementable,

even though the underlying function is certainly de�nable (e.g., via a translation to de Bruijn

indices). For larger applications, writing programs by iteration becomes tedious and error-prone

and a pattern-matching calculus such as employed in ALF [CNSvS94] or proposed by Jouannaud

and Okada [JO91] seems more practical. Our informal notation in the examples provides some

hints what concrete syntax one might envision for an implementation along these lines.

The present paper is a �rst step towards a system with dependent types in which proofs of

meta-logical properties of higher-order encodings can be expressed directly by dependently typed,

total functions. The meta-theory of such a system appears to be highly complex, since the modal

operators necessitate a let box construct which, prima facie, requires commutative conversions.

Martin Hofmann1 has proposed a semantical explanation for our iteration operator which has led

him to discover an equational formulation of the laws for iteration. This may be the critical insight

required for a dependently typed version of our calculus. We also plan to reexamine applications

in the realm of functional programming [Mil90, FS96] and related work on reasoning about higher-

order abstract syntax with explicit induction [DH94, DFH95] or de�nitional reection [MM96].

Acknowledgments. The work reported here took a long time to come to fruition, largely due

to the complex nature of the technical development. During this time we have discussed various

1personal communication

10 CONCLUSION AND FUTURE WORK 59

aspects of higher-order abstract syntax, iteration, and induction with too many people to acknowl-

edge them individually. Special thanks go to G�erard Huet and Chet Murthy, who provided the

original inspiration, and Hao-Chi Wong who helped us understand the nature of modality in this

context.

60 A DEFINITION MODAL �-CALCULUS

A De�nition modal �-calculus

Types: A ::= a j A1 ! A2 j 2A j A1 �A2

Pure types: B ::= a j B1 ! B2

Objects: M ::= c j x j �x :A:M jM1 M2

j boxM j let box x = M1 in M2 j hM1;M2i j fst M j snd M

j it h!iM h
i j case hAiM h�i

Term replacement:
 ::= � j (
 j c 7!M) j (
 j x 7! x0)

Match: � ::= � j (� j c)M) j (� j x) x0)

Contexts: � ::= � j �; x : A

Pure Context: 	 ::= � j 	; x : B

Signature: � ::= � j �; a : type j �; c : B

De�nition 2.6 (Atomic and canonical forms)

1. 	 ` V # B (V is atomic of type B in)

2. 	 ` V * B (V is canonical of type B in)

are de�ned by:

	(x) = B
AtVar

	 ` x # B

�(c) = B
AtConst

	 ` c # B

	 ` V1 # B2 ! B1 	 ` V2 * B2

AtApp
	 ` V1 V2 # B1

	 ` V # a
CanAt

	 ` V * a

	; x : B1 ` V * B2

CanLam
	 ` �x :B1: V * B1 ! B2

De�nition 3.1 (Typing judgment)

1. �;� `M : A (M has type A in context �;�)

2. �;� `
 : h!i(�) (
 is a well-typed term replacement with respect to context �;�, type

replacement !, and signature �)

3. �;� ` � : hB) Ai(�) (� is a well-typed match with respect to context �;�, subject type B,

goal type A, and signature �)

�(x) = A
TpVarReg

�;� ` x : A

�(x) = A
TpVarMod

�;� ` x : A

�(c) = B
TpConst

�;� ` c : B

�;�; x : A1 `M : A2

TpLam
�;� ` �x :A1:M : A1 ! A2

�;� `M1 : A2 ! A1 �;� `M2 : A2

TpApp
�;� `M1 M2 : A1

A DEFINITION MODAL �-CALCULUS 61

�; � `M1 : A1 �;� `M2 : A2

TpPair
�;� ` hM1;M2i : A1 � A2

�;� `M : A1 �A2

TpFst
�;� ` fst M : A1

�;� `M : A1 �A2

TpSnd
�;� ` sndM : A2

�; � `M : A
TpBox

�;� ` boxM : 2A

�;� `M1 : 2A1 �; x : A1; � `M2 : A2

TpLet
�;� ` let box x = M1 inM2 : A2

�;� `M : 2B ` ! : � �;� `
 : h!i(�0)
TpIt

�;� ` it h!iM h
i : h!i(B)

where � = I(�;B) and �0 = S�(�;�)

�; � `M : 2B �;� ` � : hB) Ai(�0)
TpCase

�;� ` case hAiM h�i : C� (B;A;B)

where �0 = S(�; �(B))

TrBase
�;� ` � : h!i(�)

�; � `
 : h!i(�) �; � `M : h!i(B0)
TrInd

�;� ` (
 j c 7!M) : h!i(�; c : B0)

TmBase
�;� ` � : hB) Ai(�)

�; � ` � : hB) Ai(�) �; � `M : C (B;A;B0)
TmInd

�;� ` (� j c)M) : hB) Ai(�; c : B0)

De�nition 4.28 (Elimination)

h!;
i(c) =

�
M if
(c) = M

c otherwise
(ElConst)

h!;
i(x) =
(x) (ElVar)

h!;
i(�x :B: V) = �u :h!i(B): h!;
 j x 7! ui(V) (ElLam)

h!;
i(V1 V2) = h!;
i(V1) h!;
i(V2) (ElApp)

De�nition 5.15 (Selection)

fB) A; �; 	g(c) = �(c) (SeConst)

fB) A; �; 	g(x) = �(x) (SeVar)

fB) A; �; 	g(�x :B0: V) = �u :C (B;A;B0): fB) A; �; x) u; (; x : B0)g(V) (SeLam)

fB) A; �; 	g(V1 V2) = fB) A; �; 	g(V1) (box �f	g: V2) (SeApp)

62 A DEFINITION MODAL �-CALCULUS

De�nition 3.3 (Evaluation judgments)

1. 	 `M ,! V : A (M evalulates to V of type A in context)

2. 	 `M * V : B (M evalulates to a canonical form V of pure type B in context)

	 `M ,! V : a
EcAtomic

	 `M * V : a

	; x : B1 `M x * V : B2

EcArrow
	 `M * �x :B1: V : B1 ! B2

	(x) = A
EvVar

	 ` x ,! x : A

�(c) = B
EvConst

	 ` c ,! c : B

�; 	; x : A1 `M : A2

EvLam
	 ` �x :A1:M ,! �x :A1:M : A1 ! A2

	 `M1 ,! �x :A2:M
0

1
: A2 ! A1 	 `M2 ,! V2 : A2 	 ` [V2=x](M

0

1
) ,! V : A1

EvApp
	 `M1 M2 ,! V : A1

	 `M1 ,! V1 : B2 ! B1 	 ` V1 # B2 ! B1 	 `M2 * V2 : B2

EvAtomic
	 `M1 M2 ,! V1 V2 : B1

�; 	 `M1 : A1 �; 	 `M2 : A2

EvPair
	 ` hM1;M2i ,! hM1;M2i : A1 � A2

	 `M ,! hM1;M2i : A1 �A2 	 `M1 ,! V : A1

EvFst
	 ` fstM ,! V : A1

	 `M ,! hM1;M2i : A1 �A2 	 `M2 ,! V : A2

EvSnd
	 ` sndM ,! V : A2

�; � `M : A
EvBox

	 ` box M ,! boxM : 2A

	 `M1 ,! boxM 0

1
: 2A 	 ` [M 0

1
=x](M2) ,! V : A2

EvLet
	 ` let box x = M1 inM2 ,! V : A2

	 `M ,! boxM 0 : 2B � `M 0 * V 0 : B 	 ` h!;
i(V 0) ,! V : h!i(B)
EvIt

	 ` it h!iM h
i ,! V : h!i(B)

	 `M ,! box M 0 : 2B � `M 0 * V 0 : B 	 ` fB) A; �; �g(V 0) ,! V : C� (B;A;B)
EvCase

	 ` case hAiM h�i ,! V : C� (B;A;B)

B PRELIMINARY RESULTS 63

B Preliminary results

Lemma 6.2 (Every context extends the empty context)

� � �

Proof: by induction over �

Case: � = �

� � � by application of CeBase

Case: � = �0; x : A

�0 � � by ind. hyp.

) �0; x : A � � by application of CeInd

2

Lemma 6.4 (Context form) If ��00 � � [�� then ��00 = � [��0 and ��0 � ��

Proof: by induction over D :: ��00 � � [��:

Case: D = CeBase
� [�� � � [��

:

��00 = � [�� by de�nition

�� � �� by application of CeInd

Case: D =

D1

��00 � � [��
CeInd

��00; x : A � � [��
:

��00 = � [��0 by ind. hyp. on D1

��0 � �� by ind. hyp. on D1

) ��00; x : A = (� [��0); x : A by de�nition

) ��00; x : A = � [��0; x : A by application of CuInd

��0; x : A � �� by application of CeInd

2

Lemma 6.19 (Modal substitution restriction)

If �0; �0 ` (�; %) : (�; �) then �0; � ` (�; �) : (�; �)

Proof: by induction over D :: �0; �0 ` (�; %) : (�; �)

Case: D = TSBase
�0; �0 ` (�; �) : (�; �)

�; � = �; � by assumption

) �0; � ` (�; �) : (�; �) by de�nition TSBase

64 B PRELIMINARY RESULTS

Case: D =

D1

�0; � `M : A

D2

�0; �0 ` (�; %) : (�; �)
TSMod

�0; �0 ` (�;M=x; %) : (�; x : A; �)

�0; � ` (�; �) : (�; �) by ind. hyp. on D2

) �0; � ` (�;M=x; �) : (�; x : A; �) by application of TSMod with D1

Case: D =
�0; �0 `M : A

D1

�0; �0 ` (�; %) : (�; �)
TSReg

�0; �0 ` (�; %;M=x) : (�; �; x : A)

�0; � ` (�; �) : (�; �) by ind. hyp. on D1

2

Lemma 6.20 (Properties of typing relation for substitutions)

1. If � = (�1; x : A) [�2 and �0; �0 ` (�; %) : (�; �) then �(x) = M and �0; � `M : A

2. If � = (�1; x : A) [�2 and �0; �0 ` (�; %) : (�; �) then %(x) = M and �0; �0 `M : A

Proof: by induction over D :: �0; �0 ` (�; %) : (�; �)

Case: D = TSBase
�0; �0 ` (�; �) : (�; �)

cannot occur.

Case: D =

D1

�0; � `M 0 : A0

D2

�0; �0 ` (�0; %) : (�00; �)
TSMod

�0; �0 ` (�0;M 0=y; %) : (�00; y : A0; �)

� = �00; y : A0 by assumption

� = �0;M 0=y by assumption

1. Case: �2 = �

� = (�1; x : A) [� by assumption

) � = �1; x : A by de�nition CuBase

) �00 = �1 by de�nition

) x = y by de�nition

) A0 = A by de�nition

) (�0;M 0=x)(x) = M 0 by de�nition SbaInd

) �(x) = M 0 by de�nition

) �0; � `M 0 : A by assumption

Case: �2 = �0

2
; z : A00, x 6= z

� = (�1; x : A) [(�0

2
; z : A00) by assumption

) � = (�1; x : A) [�0

2
; z : A00 by de�nition CuInd

) �00 = (�1; x : A) [�0

2
by de�nition

) y = z by de�nition

B PRELIMINARY RESULTS 65

) A00 = A0 by de�nition

) �0(x) = M by ind. hyp. (1) on D2

) �0; � `M : A by ind. hyp. (1) on D2

) (�0;M 0=y)(x) = M by de�nition SbaInd

) �(x) = M by de�nition

2. %(x) = M by ind. hyp. (2) on D2

�; 	 `M : A by ind. hyp. (2) on D2

Case: D =

D1

�0; �0 `M 0 : A0

D2

�0; �0 ` (�; %0) : (�; �0)
TSReg

�0; �0 ` (�; %0;M 0=y) : (�; �00; y : A0)

� = �00; y : A0 by assumption

% = %0;M 0=y by assumption

1. �(x) = M by ind. hyp. (1) on D2

�0; � `M : A by ind. hyp. (1) on D2

2. Case: �2 = �

� = (�1; x : A)[� by assumption

) � = �1; x : A by de�nition CuBase

) �00 = �1 by de�nition

) x = y by de�nition

) A0 = A by de�nition

) (%0;M 0=x)(x) = M 0 by de�nition SbaInd

) %(x) = M 0 by de�nition

) �0; �0 `M 0 : A by de�nition D1

Case: �2 = �0
2
; z : A00, x 6= z

� = (�1; x : A)[(�0
2
; z : A00) by assumption

� = (�1; x : A)[�0
2
; z : A00 by de�nition CuInd

) �00 = (�1; x : A) [�0
2

by de�nition

) y = z by de�nition

) A00 = A0 by de�nition

) %0(x) = M by ind. hyp. (2) on D2

) �0; �0 `M : A by ind. hyp. (2) on D2

) (%0;M 0=y)(x) = M by de�nition SbaInd

) %(x) = M by de�nition

2

Lemma 6.21 (Substitution lemma for typing relation)

Let �0; �0 ` (�; %) : (�; �), then the following holds:

1. If �;� `M : A then �0; �0 ` [�; %](M) : A

2. If �;� ` � : hB) Ai(�0) then �0; �0 ` [�; %](�) : hB) Ai(�0)

66 B PRELIMINARY RESULTS

3. If �;� `
 : h!i(�0) then �0; �0 ` [�; %](
) : h!i(�0)

Proof: by induction over D :: �; � ` M : A, E :: �; � ` � : hB) Ai(�0) and F :: �; � `
 :

h!i(�0):

1. Case: D =
�(x) = A

TpVarReg
�;� ` x : A

�(x) = A by assumption

) � = �1; x : A [�2 by de�nition 2.2

) %(x) = M by lemma 6.20 (1)

) �0; �0 `M : A by lemma 6.20 (1)

) [�; %](x) = M by de�nition SBVar

) �0; �0 ` [�; %](x) : A by de�nition

Case: D =
�(x) = A

TpVarMod
�;� ` x : A

�(x) = A by assumption

� = �1; x : A [�2 by de�nition

) �(x) = M by lemma 6.20 (2)

) �0; � `M : A by lemma 6.20 (2)

) [�; %](x) = M by de�nition SBVar

) �0; � ` [�; %](x) : A by de�nition

) �0 � � by lemma 6.2

) �0; �0 ` [�; %](x) : A by lemma 6.8 (2)

Case: D =
�(c) = B

TpConst
�;� ` c : B

�(c) = B by assumption

) �0; �0 ` c : B by application of TpConst

) [�; %](c) = c by application of SBConst

) �0; �0 ` [�; %](c) : B by de�nition

Case: D =
�; �; x : A1 `M : A2

TpLam
�;� ` �x :A1:M : A1 ! A2

�0; �0 ` (�; %) : (�; �) by assumption

�0 � �0 by application of CeBase

) �0; x : A1 � �0 by application of CeInd

) �0; �0; x : A1 ` (�; %) : (�; �) by lemma 6.18 (2)

) (�0; x : A1)(x) = A1 by de�nition

) �0; �0; x : A1 ` x : A1 by application of TpVarReg

) �0; �0; x : A1 ` (�; %; x=x) : (�; �; x : A1) by application of TSReg

) �0; �0; x : A1 ` [�; %; x=x](M) : A2 by ind. hyp. (1)

) �0; �0 ` �x :A1: [�; %; x=x](M) : A1 ! A2 by application of TpLam

) �0; �0 ` [�; %](�x :A1:M) : A1 ! A2 by inversion using SBLam

B PRELIMINARY RESULTS 67

Case: D =

D1

�;� `M1 : A2 ! A1

D2

�;� `M2 : A2

TpApp
�;� `M1 M2 : A1

�0; �0 ` [�; %](M1) : A2 ! A1 by ind. hyp. (1)

�0; �0 ` [�; %](M2) : A2 by ind. hyp. (1)

) �0; �0 ` [�; %](M1) [�; %](M2) : A1 by application of TpApp

) �0; �0 ` [�; %](M1 M2) : A1 by inversion using SBApp

Case: D =
�; � `M : A

TpBox
�;� ` box M : 2A

�0; �0 ` (�; %) : (�; �) by assumption

) �0; � ` (�; �) : (�; �) by lemma 6.19

) �0; � ` [�; �](M) : A by ind. hyp. (1)

) �0; �0 ` box [�; �](M) : 2A by application of TpBox

) �0; �0 ` [�; %](boxM) : 2A by de�nition SBBox

Case: D =

D1

�;� `M1 : 2A1

D2

�; x : A1; � `M2 : A2

TpLet
�;� ` let box x = M1 in M2 : A2

�0; �0 ` [�; %](M1) : 2A1 by ind. hyp. on D1

�0; �0 ` (�; %) : (�; �) by assumption

�0 � �0 by application of CeBase

) �0; x : A1 � �0 by application of CeInd

) �0; x : A1; �
0 ` (�; %) : (�; �) by lemma 6.18 (1)

) (�0; x : A1)(x) = A1 by de�nition

) �0; x : A1; � ` x : A1 by application of TpVarMod

) �0; x : A1; �
0 ` (�; x=x; %) : (�; x : A1; �) by application of TSMod

) �0; x : A1; �
0 ` [�; x=x; %](M2) : A2 by ind. hyp. on D2

) �0; �0 ` let box x = [�; %](M1) in [�; x=x; %](M2) : A2 by application of TpLet

) �0; �0 ` [�; %](let box x = M1 in M2) : A2 by de�nition SBLet

Case: D =
�; � `M : 2B �;� ` � : hB) Ai(�0)

TpCase
�;� ` case hAiM h�i : C� (B;A;B)

�; � `M : 2B by assumption

) �0; �0 ` [�; %](M) : 2B by ind. hyp. (1)

�; � ` � : hB) Ai(�0) by assumption

) �0; �0 ` [�; %](�) : hB) Ai(�0) by ind. hyp. (2)

) �0; �0 ` case hAi [�; %](M) h[�; %](�)i : C� (B;A;B) by application of TpCase

) �0; �0 ` [�; %](case hAiM h�i) : C� (B;A;B) by application of SBCase

Case: D =
�; � `M : 2B ` ! : � �;� `
 : h!i(�0)

TpIt
�;� ` it h!iM h
i : h!i(B)

�; � `M : 2B by assumption

68 B PRELIMINARY RESULTS

) �0; �0 ` [�; %](M) : 2B by ind. hyp. (1)

�; � `
 : h!i(�0) by assumption

) �0; �0 ` [�; %](
) : h!i(�0) by ind. hyp. (3)

` ! : � by assumption

) �0; �0 ` it h!i [�; %](M) h[�; %](
)i : h!i(B) by application of TpIt

) �0; �0 ` [�; %](it h!iM h
i) : h!i(B) by application of SBIt

2. Case: E = TmBase
�;� ` � : hB) Ai(�)

�0; �0 ` � : hB) Ai(�) by application of TmBase

) �0; �0 ` [�; %](�) : hB) Ai(�) by application of SBXiEmpty

Case: E =
�; � ` � : hB) Ai(�) �; � `M : C (B;A;B0)

TmInd
�;� ` (� j c)M) : hB) Ai(�; c : B0)

�; � ` � : hB) Ai(�) by assumption

) �0; �0 ` [�; %](�) : hB) Ai(�) by ind. hyp. (2)

�; � `M : C (B;A;B0) by assumption

) �0; �0 ` [�; %](M) : C (B;A;B0) by ind. hyp. (1)

) �0; �0 ` ([�; %](�) j c) [�; %](M)) : hB) Ai(�; c : B0) by application of TmInd

) �0; �0 ` [�; %](� j c) M) : hB) Ai(�; c : B0) by application of SBXi

3. Case: F = TrBase
�;� ` � : h!i(�)

�0; �0 ` � : h!i(�) by application of TrBase

) �0; �0 ` [�; %](�) : h!i(�) by application of SBOmegaEmpty

Case: F =
�; � `
 : h!i(�) �; � `M : h!i(B0)

TrInd
�;� ` (
 j c 7! M) : h!i(�; c : B0)

�; � `
 : h!i(�) by assumption

) �0; �0 ` [�; %](
) : h!i(�) by ind. hyp. (3)

�; � `M : h!i(B0) by assumption

) �0; �0 ` [�; %](M) : h!i(B0) by ind. hyp. (1)

) �0; �0 ` ([�; %](
) j c 7! [�; %](M)) : h!i(�; c : B0) by application of TrInd

) �0; �0 ` [�; %](
 j c 7!M) : h!i(�; c : B0) by application of SBOmega

2

Lemma 6.25 (Type preservation of atomic and canonical types)

1. If 	 ` V # B then �; 	 ` V : B

2. If 	 ` V * B then �; 	 ` V : B

Proof: by induction over D :: 	 ` V # B and E :: 	 ` V * B

B PRELIMINARY RESULTS 69

Case: D =
	(x) = B

AtVar
	 ` x # B

	(x) = B by assumption

) �; 	 ` x : B by application of TpVarReg

Case: D =
�(c) = B

AtConst
	 ` c # B

�(c) = B by assumption

) �; 	 ` c : B by application of TpConst

Case: D =
	 ` V1 # B2 ! B1 	 ` V2 * B2

AtApp
	 ` V1 V2 # B1

	 ` V1 # B2 ! B1 by assumption

) �; 	 ` V1 : B2 ! B1 by ind. hyp. (1)

	 ` V2 * B2 by assumption

) �; 	 ` V2 : B2 by ind. hyp. (2)

) �; 	 ` V1 V2 : B1 by application of TpApp

Case: D =
	 ` V # a

CanAt
	 ` V * a

	 ` V # a by assumption

) �; 	 ` V : a by ind. hyp. (1)

Case: D =
	; x : B1 ` V * B2

CanLam
	 ` �x :B1: V * B1 ! B2

	; x : B1 ` V * B2 by assumption

) �; 	; x : B1 ` V : B2 by ind. hyp. (2)

) �; 	 ` �x :B1: V : B1 ! B2 by application of TpLam

2

Lemma 6.28 (Goal types and abstraction closure types)

�(�f	g: B) = �(B)

Proof:

Case: 	 = �:

�(�f�g: B) = �(B) by de�nition 5.9

Case: 	 = 	0; x : B0:

�(�f	0; x : B0g: B) = �(�f	0g: B0 ! B) by de�nition 5.9

) �(�f	0; x : B0g: B) = �(B0 ! B) by ind. hyp.

) �(�f	0; x : B0g: B) = �(B) by de�nition 4.15

70 B PRELIMINARY RESULTS

2

Lemma 6.30 (Properties of subordination) Let c : C 2 �, B a pure type.

1. If a 2 Source(C) then a JB �(C)

2. If a1 JB a2 and a2 JEB a3 then a1 JB a3

Proof:

1. a 2 Source(C) by assumption

) a <C �(C) by de�nition 4.19

) a C� �(C) by de�nition 4.20

) a JB �(C) by de�nition 4.24

2. Case: a2 JB a3:

) a1 JB a3 Transitivity

Case: a2 = a3:

) a1 JB a3 by de�nition

2

Lemma 6.32 (Properties of context subordination) Let B be a pure type.

If 	 = (1; x : B
0) [2 and 	 JB �(B) then �(B0) JEB �(B) implies that forall y 2 Source(B0):

y JB �(B)

Proof:

Case: 	2 = �

	 = (1; x : B
0) [� by assumption

) 	 = 	1; x : B
0 by de�nition CuBase

) 	1; x : B
0 JB �(B) by assumption

) If �(B0) JEB �(B) then forall y 2 Source(B0) : y JB �(B) by de�nition 6.31

Case: 	2 = 	0

2
; z : B00, x 6= z

	 = (1; x : B
0) [(0

2
; z : B00) by assumption

	 = (1; x : B
0) [0

2
; z : B00 by de�nition CuInd

) If �(B0) JEB �(B) then forall y 2 Source(B0) : y JB �(B) by ind. hyp.

2

Lemma 6.34 (Property of dynamic typing)

If B0 2 PCT(B) then a <B0 �(B0) implies a CB �(B0)

B PRELIMINARY RESULTS 71

Proof: proof by induction over B:

B0 2 PCT(B) by assumption

) B = B1 ! B2 by de�nition 4.22

) PCT(B) = fB1g [PCT(B2) by de�nition 4.22

Case: B0 = B1

a <B1
�(B1) by assumption

) a CB1!B2
�(B1) by de�nition 4.23

) a CB �(B0) by de�nition

Case: B0 6= B1

B0 2 PCT(B2) by assumption

a <B0 �(B0) by assumption

) a CB2
�(B0) by ind. hyp.

) a CB1!B2
�(B0) by de�nition 4.23

) a CB �(B0) by de�nition

2

Lemma 6.35 (Independence)

If �(B) 6JB �(C) then Source(C) \ I(�;B) = ;

Proof: proof by contradiction:

Suppose Source(C)\ I(�;B) 6= ;

Let a 2 Source(C)\ I(�;B) by de�nition

) a 2 Source(C) by de�nition

) a JB �(C) by lemma 6.30

) a 2 I(�;B) by de�nition

) �(B) JB a by de�nition 4.25

) �(B) JB �(C) by de�nition 4.24

) Contradiction

2

Lemma 6.36 (Properties of Join) Let c : C 2 �, � arbitrary and ` ! : �

If Source(C)\ � = ; and �(C) =2 � then h!i(C) = C

72 B PRELIMINARY RESULTS

Proof: proof by induction on C:

Case: C = a:

�(C) = a by de�nition 4.15

) a =2 � by assumption

) !(a) not de�ned

) h!i(a) = a by de�nition 4.26

) h!i(C) = h!i(a) = a = C by de�nition

Case: C = C1 ! C2:

Source(C) = Source(C1) [f�(C1)g [Source(C2) by de�nition 4.16

) Source(C1) � Source(C) by de�nition

) Source(C1) \ � = ; by de�nition

) �(C1) 2 Source(C) by de�nition

) �(C1) =2 � by de�nition

) h!i(C1) = C1 by ind. hyp.

) Source(C2) � Source(C) by de�nition

) Source(C2) \ � = ; by de�nition

) �(C2) = �(C1 ! C2) by de�nition 4.15

) �(C2) =2 � by assumption

) h!i(C2) = C2 by ind. hyp.

) h!i(C) = h!i(C1 ! C2) by assumption

) h!i(C) = h!i(C1)! h!i(C2) by de�nition 4.26

) h!i(C) = C1 ! C2 by de�nition

) h!i(C) = C by assumption

2

Lemma 6.37 (Properties of subordination)

If �(C) =2 I(�;B) and �(C) JEB �(B) then �(B) 6JB �(C)

Proof: proof by contradiction:

Case: �(C) JB �(B)

Suppose �(B) JB �(C) by assumption

) �(C) 2 I(�;B) by de�nition 4.25

) Contradiction

B PRELIMINARY RESULTS 73

Case: �(C) = �(B)

Suppose �(B) JB �(C) by assumption

) �(C) JB �(B) by de�nition

) �(C) 2 I(�;B) by de�nition 4.25

) Contradiction

2

74 C CANONICAL FORM THEOREM

C Canonical form theorem

Lemma 7.1 (Self evaluation)

1. If 	 `M ,! V : B and 	 ` V * B then 	 `M * V : B

2. If 	 ` V * B then 	 ` V ,! V : B

3. If 	 ` V # B then 	 ` V ,! V : B

Proof: by mutual induction over D :: 	 ` V * B and E :: 	 ` V * B and F :: 	 ` V # B

1. Case: D =
	 ` V # a

CanAt
	 ` V * a

	 `M ,! V : a by assumption

) 	 `M * V : a by application of EcAtomic

Case: D =
	; x : B1 ` V2 * B2

CanLam
	 ` �x :B1: V2 * B1 ! B2

	 `M ,! �x :B1: V2 : B1 ! B2 by assumption

	 � 	 by application of CeBase

) 	; x : B1 � 	 by application of CeInd

) 	; x : B1 `M ,! �x :B1: V2 : B1 ! B2 by lemma 6.26

) 	; x : B1 ` V2 ,! V2 : B2 by ind. hyp. (2)

	; x : B1 ` x ,! x : B1 by application of EvVar

) 	; x : B1 ` [x=x](V2) ,! V2 : B2 by de�nition

) 	; x : B1 `M x ,! V2 : B2 by application of EvApp

) 	; x : B1 `M x * V2 : B2 by ind. hyp. (1)

) 	 `M * �x :B1: V2 : B2 by application of EcArrow

2. Case: E =
	 ` V # a

CanAt
	 ` V * a

	 ` V ,! V : a by ind. hyp. (3)

Case: E =
	; x : B1 ` V2 * B2

CanLam
	 ` �x :B1: V2 * B1 ! B2

�; 	; x : B1 ` V2 : B2 by lemma 6.25

) 	 ` �x :B1: V2 ,! �x :B1: V2 : B1 ! B2 by application of EvLam

3. Case: F =
	(x) = B

AtVar
	 ` x # B

	 ` x ,! x : B by application of EvVar

Case: F =
�(c) = B

AtConst
	 ` c # B

	 ` c ,! c : B by application of EvConst

C CANONICAL FORM THEOREM 75

Case: F =
	 ` V1 # B2 ! B1 	 ` V2 * B2

AtApp
	 ` V1 V2 # B1

	 ` V1 ,! V1 : B2 ! B1 by ind. hyp. (3)

) 	 ` V2 ,! V2 : B2 by ind. hyp. (2)

) 	 ` V2 * V2 : B2 by ind. hyp. (1)

) 	 ` V1 V2 ,! V1 V2 : B1 by application of EvAtomic

2

Lemma 7.2 (Property of evaluation results)

1. If 	 `M * V : B then 	 ` V * B

2. If 	 `M ,! V : a then 	 ` V # a

Proof: by mutual induction over D :: 	 `M * V : B and E :: 	 `M ,! V : B

1. Case: D =
	 `M ,! V : a

EcAtomic
	 `M * V : a

	 ` V # a by ind. hyp. (2)

) 	 ` V * a by application of CanAt

Case: D =
	; x : B1 `M x * V2 : B2

EcArrow
	 `M * �x :B1: V2 : B1 ! B2

	; x : B1 ` V2 * B2 by ind. hyp. (1)

) 	 ` �x :B1: V2 * B1 ! B2 by application of CanLam

2. Case: E =
	(x) = a

EvVar
	 ` x ,! x : a

	 ` x # a by application of AtVar

Case: E =
�(c) = a

EvConst
	 ` c ,! c : a

	 ` c # a by application of AtConst

Case: no rules for EvLam

Case: E =
	 `M1 ,! �x :A2:M

0

1
: A2 ! a 	 `M2 ,! V2 : A2

D1

	 ` [V2=x](M
0

1
) ,! V : a

EvApp
	 `M1 M2 ,! V : a

	 ` V # a by ind. hyp. (1) on D1

Case: E =
	 `M1 ,! V1 : B2 ! a

D1

	 ` V1 # B2 ! a

D2

	 `M2 * V2 : B2

EvAtomic
	 `M1 M2 ,! V1 V2 : a

	 ` V2 * B2 by ind. hyp. (1) on D2

) 	 ` V1 V2 # a by application of AtApp on D1

76 C CANONICAL FORM THEOREM

Case: E =

D1

	 `M ,! hM1;M2i : a� A2

D2

	 `M1 ,! V : a
EvFst

	 ` fstM ,! V : a

	 ` V # a by ind. hyp. (1) on D2

Case: E =

D1

	 `M ,! hM1;M2i : A1 � a

D2

	 `M2 ,! V : a
EvSnd

	 ` snd M ,! V : a

	 ` V # a by ind. hyp. (1) on D2

Case: no rules for EvBox

Case: E =
	 `M1 ,! box M 0

1
: 2A

D1

	 ` [M 0

1
=x](M2) ,! V : a

EvLet
	 ` let box x = M1 in M2 ,! V : a

	 ` V # a by ind. hyp. (1) on D1

Case: E =
	 `M ,! box M 0 : 2B � `M 0 * V 0 : B

D1

	 ` fB) A; �; �g(V 0) ,! V : a
EvCase

	 ` case hAiM h�i ,! V : a

	 ` V # a by ind. hyp. (1) on D1

Case: E =
	 `M ,! box M 0 : 2B � `M 0 * V 0 : B

D1

	 ` h!;
i(V 0) ,! V : a
EvIt

	 ` it h!iM h
i ,! V : a

	 ` V # a by ind. hyp. (1) on D1

2

Lemma 7.3 (Evaluation to atomic forms implies evaluation to canonical forms)

If 	 `M ,! V : B and 	 ` V # B then 	 `M * V 0 : B for a V 0

Proof: by induction over B:

Case: B = a:

	 `M ,! V : a by assumption

) 	 `M * V : a by application of EcAtomic

Case: B = B1 ! B2:

Let 	0 = 	; x : B1 by de�nition

) 	0(x) = B1 by de�nition 2.2

) 	0 ` x ,! x : B1 by application of EvVar

) 	0 ` x # B1 by application of AtVar

) 	0 ` x * Vx : B1 by ind. hyp.

) 	0 ` Vx * B1 by lemma 7.2 (1)

C CANONICAL FORM THEOREM 77

	 `M ,! V : B1 ! B2 by assumption

	 � 	 by de�nition CeBase

) 	0 � 	 by de�nition CeInd

) 	0 `M ,! V : B1 ! B2 by lemma 6.26

	0 ` V # B1 ! B2 by assumption

) 	0 `M x ,! V Vx : B2 by application of EvAtomic

) 	0 ` V Vx # B2 by application of AtApp

) 	0 `M x * V 0 : B2 by ind. hyp.

) 	; x : B1 `M x * V 0 : B2 by de�nition

) 	 `M * �x :B1: V
0 : B1 ! B2 by application of EcArrow

2

Lemma 7.6 (Type preservation for replacements) If 	+ � `
 2 [[h!i(�; �)]] then �; 	 `
 :

h!i(�)

Proof: by induction over �

Case: � = �

�; 	 ` � : h!i(�) by application of TrBase

Case: � = �0; c : B

	+ � `
 2 [[h!i(�0; c : B; �)]] by assumption

)
 =
0 j c 7!M by de�nition 7.5

) 	 `M 2 [[h!i(B)]] by de�nition 7.5

) �; 	 `M : h!i(B) by de�nition 7.4

) 	+ � `
0 2 [[h!i(�0; �)]] by de�nition 7.5

) �; 	 `
0 : h!i(�0) by ind. hyp.

) �; 	 ` (
0 j c 7!M) : h!i(�0; c : B) by application of TrInd

2

Lemma 7.8 (Type preservation for matches) If 	+ � ` � 2 [[hB) Ai(�; �)]] then �; 	 ` � :

hB) Ai(�)

Proof: by induction over �

Case: � = �

�; 	 ` � : hB) Ai(�) by application of TmBase

78 C CANONICAL FORM THEOREM

Case: � = �0; c : B0

	+ � ` � 2 [[hB) Ai(�0; c : B; �)]] by assumption

) � = �0 j c)M by de�nition 7.7

) 	 `M 2 [[C (B;A;B0)]] by de�nition 7.7

) �; 	 `M : C (B;A;B0) by de�nition 7.4

) 	+ � ` �0 2 [[hB) Ai(�0; �)]] by de�nition 7.7

) �; 	 ` �0 : hB) Ai(�0) by ind. hyp.

) �; 	 ` (�0 j c)M) : hB) Ai(�0; c : B0) by application of TmInd

2

Lemma 7.9 (Weakening for logical relations)

1. If 	 `M 2 [[A]] and 	0 � 	 then 	0 `M 2 [[A]]

2. If 	 ` V 2 jAj and 	0 � 	 then 	0 ` V 2 jAj

Proof: by induction over A:

1. 	 `M 2 [[A]] by assumption

) �; 	 `M : A by de�nition 7.4

) 	 `M ,! V : A by de�nition 7.4

) 	 ` V 2 jAj by de�nition 7.4

) �; 	0 `M : A by lemma 6.8

) 	0 `M ,! V : A by lemma 6.26

) 	0 ` V 2 jAj by ind. hyp. (2)

	0 `M 2 [[A]] by de�nition 7.4

2. Case: A = a:

	 ` V * a by de�nition 7.4

	0 ` V * a by lemma 6.24 (2)

	0 ` V 2 jaj by de�nition 7.4

Case: A = A1 ! A2:

Case: V = �x :A1:M :

Let 	00 � 	0 and 	 ` V 0 2 jA1j

) 	00 � 	 by lemma 6.3

) 	00 ` [V 0=x](M) 2 [[A2]] by de�nition 7.4

) 	0 ` �x :A1:M 2 jA1 ! A2j by de�nition 7.4

Case: 	 ` V # A1 ! A2:

Let 	00 � 	0 and 	 ` V 0 2 jA1j

) 	00 � 	 by lemma 6.3

) 	00 ` V V 0 2 jA2j by de�nition 7.4

) 	0 ` V 2 jA1 ! A2j by de�nition 7.4

C CANONICAL FORM THEOREM 79

Case: A = 2A0:

) 	 ` box M 2 j2A0j by assumption

) � `M 2 jA0j by de�nition 7.4

) 	0 ` box M 2 j2A0j by de�nition 7.4

2

Lemma 7.10 (Weakening for logical relations for replacements)

If 	 + ~	 `
 2 [[h!i(�; 	̂)]] and ~	0 � ~	 then 	 + ~	0 `
 2 [[h!i(�; 	̂)]]

Proof: by induction over �; 	̂:

Case: � = �; 	̂ = �:

 = � by de�nition 7.5

) 	+ ~	0 ` � 2 [[h!i(�; �)]] by de�nition 7.5

Case: � = �0; c : B; 	̂ = �:

 =
0 j c 7!M by de�nition 7.5

	 `M 2 [[h!i(B)]] by de�nition 7.5

	 + ~	 `
0 2 [[h!i(�0; �)]] by de�nition 7.5

) 	+ ~	0 `
0 2 [[h!i(�0; �)]] by ind. hyp.

) 	+ ~	0 `
0 j c 7!M 2 [[h!i(�0; c : B; �)]] by de�nition 7.5

Case: 	̂ = 	̂0; x : B:

 =
0 j x 7! u by de�nition 7.5

~	 ` u 2 [[h!i(B)]] by de�nition 7.5

	 + ~	 `
0 2 [[h!i(�; 	̂0)]] by de�nition 7.5

) ~	0 ` u 2 [[h!i(B)]] by lemma 7.9 (1)

) 	+ ~	0 `
0 2 [[h!i(�; 	̂0)]] by ind. hyp.

) 	+ ~	0 `
0 j x 7! u 2 [[h!i(�; 	̂0; x : B)]] by de�nition 7.5

2

Lemma 7.11 (Weakening for logical relations for matches)

If 	 + ~	 ` � 2 [[hB) Ai(�; 	̂)]] and ~	0 � ~	 then 	 + ~	0 ` � 2 [[hB) Ai(�; 	̂)]]

Proof: by induction over �; 	̂:

Case: � = �; 	̂ = �:

� = � by de�nition 7.7

) 	+ ~	0 ` � 2 [[hB) Ai(�; �)]] by de�nition 7.7

80 C CANONICAL FORM THEOREM

Case: � = �0; c : B0; 	̂ = �:

� = �0 j c 7!M by de�nition 7.7

	 `M 2 [[C (B;A;B0)]] by de�nition 7.7

	 + ~	 ` �0 2 [[hB) Ai(�0; �)]] by de�nition 7.7

) 	+ ~	0 ` �0 2 [[hB) Ai(�0; �)]] by ind. hyp.

) 	+ ~	0 ` �0 j c 7!M 2 [[hB) Ai(�0; c : B0; �)]] by de�nition 7.7

Case: 	̂ = 	̂0; x : B0:

� = �0 j x 7! u by de�nition 7.7

~	 ` u 2 [[C (B;A;B0)]] by de�nition 7.7

	 + ~	 ` �0 2 [[hB) Ai(�; 	̂0)]] by de�nition 7.7

) ~	0 ` u 2 [[C (B;A;B0)]] by lemma 7.9 (1)

) 	+ ~	0 ` �0 2 [[hB) Ai(�; 	̂0)]] by ind. hyp.

) 	+ ~	0 ` �0 j x 7! u 2 [[hB) Ai(�; 	̂0; x : B0)]] by de�nition 7.7

2

Lemma 7.12 (Access to logical relations for replacements I) If � = �1; c : B [�2 and

	+ ~	 `
 2 [[h!i(�; 	̂)]] then 	 `M 2 [[h!i(B)]] and M = h!;
i(c)

Proof: by induction over the structure of 	̂, �2:

Case: 	̂ = �:

Case: �2 = �:

� = �1; x : B by de�nition CuBase

)
 =
0 j c 7!M by de�nition 7.5

) h!;
i(c) = M by de�nition ElVar

) 	 `M 2 [[h!i(B)]] by de�nition 7.5

Case: �2 = �0

2
; c0 : B0:

� = �1; x : B [�0

2
; y : B0 by de�nition

) � = (�1; x : B [�0

2
); y : B0 by de�nition CuInd

) 	 `M 2 [[h!i(B)]] by ind. hyp.

) M = h!;
i(c) by ind. hyp.

Case: 	̂ = 	̂0; y : B0:

) 	 `M 2 [[h!i(B)]] by ind. hyp.

) M = h!;
i(c) by ind. hyp.

2

Lemma 7.13 (Access to logical relations for replacements II) If �(c) is unde�ned and

	+ ~	 `
 2 [[h!i(�; 	̂)]] then
(c) is unde�ned

C CANONICAL FORM THEOREM 81

Proof: by induction over the structure of 	̂, �:

Case: 	̂ = �:

Case: � = �:

�(c) is unde�ned by de�nition

Case: � = �0; c0 : B0:

�(c) is unde�ned by assumption

) (�0; c0 : B0)(c) is unde�ned by de�nition

) �0(c) is unde�ned by de�nition

)
(c) is unde�ned by ind. hyp.

Case: 	̂ = 	̂0; y : B0:

)
(c) is unde�ned by ind. hyp.

2

Lemma 7.14 (Access to logical relations for replacements III) If 	̂ = 	̂1; x : B[̂2 and

	 + ~	 `
 2 [[h!i(�; 	̂)]] then ~	 ` u 2 [[h!i(B)]] and ~	 = ~	1; u : h!i(B) [~	2 and u =

h!;
i(x)

Proof: by induction over the structure of 	̂2:

Case: 	̂2 = �:

	̂ = 	̂1; x : B by de�nition CuBase

)
 =
0 j x 7! u by de�nition 7.5

) h!;
i(x) = u by de�nition ElVar

) ~	 ` u 2 [[h!i(B)]] by de�nition 7.5

) ~	 ` u ,! u : h!i(B) by de�nition 7.4

) ~	(u) = h!i(B) by inversion using EvVar

) ~	 = ~	1; u : h!i(B) [~	2 by de�nition CuInd

Case: 	̂2 = 	̂0

2
; y : B0:

	̂ = 	̂1; x : B [̂0

2
; y : B0 by de�nition

) 	̂ = (̂1; x : B [̂0

2
); y : B0 by de�nition CuInd

) ~	 ` u 2 [[h!i(B)]] by ind. hyp.

) ~	 = ~	1; u : h!i(B) [~	0

2
by ind. hyp.

) u = h!;
i(x) by ind. hyp.

2

Lemma 7.15 (Access to logical relations for matches I) If � = �1; c : B
0[�2 and 	+ ~	 `

� 2 [[hB) Ai(�; 	̂)]] then 	 ` M 2 [[C (B;A;B0)]] and M = fB) A; �; 	0g(c) for an

arbitrary 	0.

82 C CANONICAL FORM THEOREM

Proof: by induction over the structure of 	̂, �2:

Case: 	̂ = �:

Case: �2 = �:

� = �1; x : B
0 by de�nition CuBase

) � = �0 j c 7!M by de�nition 7.7

) fB) A; �; 	0g(c) = M by de�nition SeVar

) 	 `M 2 [[C (B;A;B)]] by de�nition 7.7

Case: �2 = �0

2
; y : B00:

� = �1; x : B
0 [�0

2
; y : B00 by de�nition

) � = (�1; x : B
0 [�0

2
); y : B00 by de�nition CuInd

) 	 `M 2 [[C (B;A;B0)]] by ind. hyp.

) M = fB) A; �; 	0g(c) by ind. hyp.

Case: 	̂ = 	̂0; y : B00:

) 	 `M 2 [[C (B;A;B0)]] by ind. hyp.

) M = fB) A; �; 	0g(c) by ind. hyp.

2

Lemma 7.16 (Access to logical relations for matches I) If 	̂ = 	̂1; x : B
0[̂2 and 	+~	 `

� 2 [[hB) Ai(�; 	̂)]] then ~	 ` u 2 [[C (B;A;B0)]] and ~	 = ~	1; u : C (B;A;B
0) [~	2 and

u = fB) A; �; 	0g(x) for an arbitrary 	0.

Proof: by induction over the structure of 	̂2:

Case: 	̂2 = �:

	̂ = 	̂1; x : B
0 by de�nition CuBase

) � = �0 j x 7! u by de�nition 7.7

) fB) A; �; 	0g(x) = u by de�nition SeVar

) ~	 ` u 2 [[C (B;A;B0)]] by de�nition 7.7

) ~	 ` u ,! u : C (B;A;B0) by de�nition 7.4

) ~	(u) = C (B;A;B0) by inversion using EvVar

) ~	 = ~	1; u : C (B;A;B
0)[~	2 by de�nition CuInd

Case: 	̂2 = 	̂0

2
; y : B00:

	̂ = 	̂1; x : B
0 [̂0

2
; y : B00 by de�nition

) 	̂ = (̂1; x : B
0 [̂0

2
); y : B00 by de�nition CuInd

) ~	 ` u 2 [[C (B;A;B0)]] by ind. hyp.

) ~	 = ~	1; u : C (B;A;B
0)[~	0

2
by ind. hyp.

) u = fB) A; �; 	0g(x) by ind. hyp.

C CANONICAL FORM THEOREM 83

2

Lemma 7.17 (Logical relations and canonical forms)

1. If 	 `M 2 [[B]] then 	 `M * V : B

2. If 	 ` V # B then 	 ` V 2 jBj

Proof: by induction over B:

Case: B = a:

1. 	 `M 2 [[a]] by assumption

) 	 `M ,! V 0 : a and 	 ` V 0 2 jaj by de�nition 7.4

) 	 ` V 0 * a by de�nition 7.4

) 	 ` V 0 # a by inversion using CanAt

) 	 `M * V : a by lemma 7.3

2. 	 ` V # a by assumption

) 	 ` V * a by application of CanAt

) 	 ` V 2 jaj by de�nition 7.4

Case: B = B1 ! B2:

1. 	 `M 2 [[B1 ! B2]] by assumption

) �; 	 `M : B1 ! B2 by de�nition 7.4

) 	 `M ,! V : B1 ! B2 by de�nition 7.4

) 	 ` V 2 jB1 ! B2j by de�nition 7.4

Case: V = �x :B1:M
0 by de�nition 7.4

Let 	0 = 	; x : B1 by de�nition

) 	0(x) = B1 by de�nition

) 	0 ` x ,! x : B1 by application of EvVar

) 	0 ` x # B1 by application of AtVar

) 	0 ` x 2 jB1j by ind. hyp. (2)

) 	0 ` [x=x](M 0) 2 [[B2]] by de�nition 7.4

) 	0 ` [x=x](M 0) ,! V 0 : B2 by de�nition 7.4

) 	0 ` V 0 2 jB2j by de�nition 7.4

) 	 � 	 by application of CeBase

) 	0 � 	 by application of CeInd

) 	0 `M ,! V : B1 ! B2 by lemma 6.26

) 	0 `M x ,! V 0 : B2 by application of EvApp

) �; 	0 ` x : B1 by application of TpVarReg

) �; 	0 `M : B1 ! B2 by lemma 6.8 (2)

) �; 	0 `M x : B2 by application of TpApp

) 	0 `M x 2 [[B2]] by de�nition 7.4

) 	0 `M x * V 0 : B2 by ind. hyp. (1)

) 	; x : B1 `M x * V 0 : B2 by de�nition

) 	 `M * �x :B1: V
0 : B2 by application of EcArrow

84 C CANONICAL FORM THEOREM

Case: 	 ` V # B1 ! B2 by de�nition 7.4

Let 	0 = 	; x : B1 by de�nition

) 	0(x) = B1 by de�nition

) 	0 ` x ,! x : B1 by application of EvVar

) 	0 ` x # B1 by application of AtVar

) 	0 ` x * Vx : B1 by lemma 7.3

) 	 � 	 by application of CeBase

) 	0 � 	 by application of CeInd

) 	0 `M ,! V : B1 ! B2 by lemma 6.26

) 	0 `M x ,! V Vx : B2 by application of EvAtomic

) 	0 ` Vx * B1 by lemma 7.2 (1)

) 	0 ` V Vx 2 jB1 ! B2j by de�nition 7.4

) �; 	0 ` x : B1 by application of TpVarReg

) �; 	0 `M : B1 ! B2 by lemma 6.8 (2)

) �; 	0 `M x : B2 by application of TpApp

) 	0 `M x 2 [[B2]] by de�nition 7.4

) 	0 `M x * V 0 : B2 by ind. hyp.

) 	; x : B1 `M x * V 0 : B2 by de�nition

) 	 `M * �x :B1: V
0 : B2 by application of EcArrow

2. 	 ` V # B1 ! B2

Let 	0 context, s.t. 	0 � 	

Let V 0 s.t. 	0 ` V 0 * B1

) 	0 ` V # B1 ! B2 by lemma 6.24

) 	0 ` V V 0 # B2 by application of AtApp

) 	0 ` V V 0 2 jB2j by ind. hyp. (2)

) 	 ` V 2 jB1 ! B2j by de�nition 7.4

2

Lemma 7.18 (Types of atomic objects are pure)

If 	 ` V # A then A is pure.

Proof: by induction over D :: 	 ` V # A:

Case: D =
	(x) = A

AtVar
	 ` x # A

	(x) = B by assumption on 	

) A = B and A is pure by de�nition signature

Case: D =
�(c) = A

AtConst
	 ` c # A

�(c) = B by assumption on �

) A = B and A is pure by de�nition context

C CANONICAL FORM THEOREM 85

Case: D =

D1

	 ` V1 # B2 ! A

D2

	 ` V2 * B2

AtApp
	 ` V1 V2 # A

B2 ! A is pure by ind. hyp. on D1

) A is pure by de�nition pure types

2

Lemma 7.19 (Well-typedness of logical relations)

If 	 ` V 2 jAj then �; 	 ` V : A

Proof: by induction over A:

Case: A = a:

	 ` V 2 jaj by assumption

) 	 ` V * a by de�nition 7.4

) �; 	 ` V : a by lemma 6.25

Case: A = A1 ! A2:

	 ` V 2 jA1 ! A2j by assumption

Case: V = �x :A1:M by de�nition 7.4

Let 	0 = 	; x : A1 by de�nition

) 	0(x) = A1 by de�nition

) 	0 ` x # A1 by application of AtVar

) 	0 ` x 2 jA1j by lemma 7.17

) 	0 ` [x=x](M)| {z }
=M

2 [[A2]] by de�nition 7.4

) �; 	; x : A1 `M : A2 by de�nition 7.4

) �; 	 ` �x :A1:M : A1 ! A2 by application of TpLam

Case: 	 ` V # A1 ! A2 by de�nition 7.4

) 	 ` V # B1 ! B2 and A1 = B1; A2 = B2 by lemma 7.18

) �; 	 ` V : B1 ! B2 by lemma 6.25

Case: A = 2A0:

	 ` V 2 j2A0j by assumption

) V = box M by de�nition 7.4

) 	 ` box M 2 j2A0j by de�nition 7.4

) � `M 2 [[A0]] by de�nition 7.4

) �; � `M : A0 by de�nition 7.4

) �; 	 ` box M : 2A0 by application of TpBox

86 C CANONICAL FORM THEOREM

2

Lemma 7.20 (Logical relations: Self evaluation of values)

If 	 ` V 2 jAj then 	 ` V ,! V : A

Proof: by induction over A:

Case: A = a:

	 ` V 2 jaj by assumption

) 	 ` V * a by de�nition 7.4

) 	 ` V ,! V : a by lemma 7.1

Case: A = A1 ! A2:

	 ` V 2 jA1 ! A2j by assumption

Case: V = �x :A1:M by de�nition 7.4

) �; 	 ` �x :A1:M : A1 ! A2 by lemma 7.19

) 	 ` �x :A1:M ,! �x :A1:M : A1 ! A2 by application of EvLam

Case: 	 ` V # A1 ! A2 by de�nition 7.4

) 	 ` V # B1 ! B2 and A1 = B1; A2 = B2 by lemma 7.18

) 	 ` V ,! V : B1 ! B2 by lemma 7.1

Case: A = A1 �A2:

	 ` V 2 jA1 �A2j by assumption

) V = hM1;M2i by de�nition 7.4

) 	 `M1 2 [[A1]] by de�nition 7.4

) 	 `M2 2 [[A2]] by de�nition 7.4

) �; 	 `M1 : A1 by de�nition 7.4

) �; 	 `M2 : A2 by de�nition 7.4

) 	 ` hM1;M2i ,! hM1;M2i : A1 � A2 by application of EvPair

Case: A = 2A0:

	 ` V 2 j2A0j by assumption

) V = box M by de�nition 7.4

) 	 ` box M 2 j2A0j by de�nition 7.4

) �; 	 ` box M : 2A0 by lemma 7.19

) �; � `M : A0 by inversion using TpBox

) 	 ` box M ,! boxM : 2A0 by application of EvBox

2

C CANONICAL FORM THEOREM 87

Lemma 7.21 (Logical relation subsumption)

If 	 ` V 2 jAj then 	 ` V 2 [[A]]

Proof: 	 ` V 2 jAj by assumption

) 	 ` V ,! V : A by lemma 7.20

) �; 	 ` V : A by lemma 7.19

) 	 ` V 2 [[A]] by de�nition 7.4

2

Lemma 7.22 (Logical relation is closed under application)

If 	 `M1 2 [[A2 ! A1]] and 	 `M2 2 [[A2]] then 	 `M1 M2 2 [[A1]]

Proof: 	 `M1 2 [[A2 ! A1]] by assumption

) �; 	 `M1 : A2 ! A1 by de�nition 7.4

) 	 `M1 ,! V1 : A2 ! A1 by de�nition 7.4

) 	 ` V1 2 jA2 ! A1j by de�nition 7.4

	 `M2 2 [[A2]] by assumption

) �; 	 `M2 : A2 by de�nition 7.4

) 	 `M2 ,! V2 : A2 by de�nition 7.4

) 	 ` V2 2 jA2j by de�nition 7.4

) �; 	 `M1 M2 : A1 by application of TpApp

Case: V1 = �x :A2:M
0

1

) 	 ` [V2=x](M
0

1
) 2 [[A1]] by de�nition 7.4

) �; 	 ` [V2=x](M
0

1
) : A1 by de�nition 7.4

) 	 ` [V2=x](M
0

1
) ,! V : A1 by de�nition 7.4

) 	 ` V 2 jA1j by de�nition 7.4

) 	 `M1 M2 ,! V : A1 by application of EvApp

) 	 `M1 M2 2 [[A1]] by de�nition 7.4

Case: 	 ` V1 # A2 ! A1

) 	 ` V1 # B2 ! B1 and A2 = B2; A1 = B1 by lemma 7.18

) 	 `M2 * V 0

2
: B2 by lemma 7.17 (1)

) 	 ` V 0

2
* B2 by lemma 7.2 (1)

) 	 ` V1 V
0

2
2 jB1j by de�nition 7.4

) 	 `M1 M2 ,! V1 V
0

2
: B1 by application of EvAtomic

) 	 `M1 M2 2 [[B1]] by de�nition 7.4

2

Lemma 7.27 (Modal substitution restriction)

88 C CANONICAL FORM THEOREM

If 	 ` �; % 2 [�; �] then � ` �; � 2 [�; �]

Proof: 	 ` �; % 2 [�; �] by assumption

) ` � 2 [[�]] by de�nition 7.23

) � ` � 2 j�j by de�nition 7.24

) � ` �; � 2 [�; �] by de�nition 7.25

2

Lemma 7.28 (Well-typedness of modal substitutions in logical relations:)

If ` � 2 [[�]] then �; � ` (�; �) : (�; �)

Proof: by induction over �:

Case: � = �:

` � 2 [[�]] by assumption

) � = � by de�nition 7.23

) �; � ` (�; �) : (�; �) by application of TSBase

Case: � = �0; x : A:

` � 2 [[�0; x : A]] by assumption

) � = �0;M=x by de�nition 7.23

) � `M 2 [[A]] by de�nition 7.23

) ` �0 2 [[�0]] by de�nition 7.23

) �; � ` (�0; �) : (�0; �) by ind. hyp.

) �; � `M : A by de�nition 7.4

) �; � ` (�0;M=x; �) : (�0; x : A; �) by application of TSMod

) �; � ` (�; �) : (�; �) by de�nition

2

Lemma 7.29 (Well-typedness of arbitrary substitutions in logical relations:)

If 	 ` % 2 j�j then �; 	 ` (�; %) : (�; �)

Proof: by induction over �:

Case: � = �:

	 ` % 2 j�j by assumption

) % = � by de�nition 7.24

) �; 	 ` (�; �) : (�; �) by application of TSBase

C CANONICAL FORM THEOREM 89

Case: � = �0; x : A:

	 ` % 2 j�0; x : Aj by assumption

) % = %0;M=x by de�nition 7.24

) 	 `M 2 jAj by de�nition 7.24

) 	 `M 2 [[A]] by lemma 7.21

) 	 ` %0 2 j�0j by de�nition 7.24

) �; 	 ` (�; %0) : (�; �0) by ind. hyp.

) �; 	 `M : A by de�nition 7.4

) �; 	 ` (�; %0;M=x) : (�; �0; x : A) by application of TSReg

) �; 	 ` (�; %) : (�; �) by de�nition

2

Lemma 7.30 (Combination of two substitutions)

If �; � ` (�; �) : (�; �) and �; 	 ` (�; %) : (�; �) then �; 	 ` (�; %) : (�; �)

Proof: by induction over D :: �; � ` (�; �) : (�; �)

Case: D = TSBase
�; � ` (�; �) : (�; �)

:

�; 	 ` (�; %) : (�; �) by assumption

Case: D =

D1

�; � `M : A

D2

�; � ` (�0; �) : (�0; �)
TSMod

�; � ` (�0;M=x; �) : (�0; x : A; �)
:

�; 	 ` (�0; %) : (�0; �) by ind. hyp.

�; 	 ` (�; %) : (�; �) by application of TSMod

2

Lemma 7.31 (Well-typedness of substitutions in logical relations:)

If 	 ` �; % 2 [�; �] then �; 	 ` (�; %) : (�; �)

Proof: 	 ` �; % 2 [�; �] by assumption

) ` � 2 [[�]] by de�nition 7.25

) 	 ` % 2 j�j by de�nition 7.25

) �; � ` (�; �) : (�; �) by lemma 7.28

) �; 	 ` (�; %) : (�; �) by lemma 7.29

) �; 	 ` (�; %) : (�; �) by lemma 7.29

2

90 C CANONICAL FORM THEOREM

Lemma 7.32 (Properties of logical relation for modal contexts)

If � = (�1; x : A) [�2 and ` � 2 [[�]] then �(x) = M and � `M 2 [[A]]

Proof: by induction over �2

1. Case: �2 = �

� = (�1; x : A) [� by assumption

� = �1; x : A by de�nition CuBase

` � 2 [[�1; x : A]] by assumption

) � = �1;M=x by de�nition 7.23

) � `M 2 [[A]] by de�nition 7.23

) (�1;M=x)(x) = M by de�nition SbaInd

) �(x) = M by de�nition

Case: �2 = �0

2
; y : A0; x 6= y

� = (�1; x : A) [(�0

2
; y : A0) by assumption

� = (�1; x : A) [�0

2
; y : A0 by de�nition CuInd

` � 2 [[(�1; x : A) [�0

2
; y : A0]] by assumption

) � = �0
1
;M 0=y by de�nition 7.23

) � `M 0 2 [[A0]] by de�nition 7.23

) ` �0
1
2 [[(�1; x : A) [�0

2
]] by de�nition 7.23

) �0
1
(x) = M by ind. hyp.

) � `M 2 [[A]] by ind. hyp.

) (�0
1
;M 0=y)(x) = M by de�nition SbaInd

) �(x) = M by de�nition

2

Lemma 7.33 (Properties of logical relation for arbitrary contexts)

If � = (�1; x : A) [�2 and 	 ` % 2 j�j then %(x) = M and 	 `M 2 jAj

Proof: by induction over �2

1. Case: �2 = �

� = (�1; x : A)[� by assumption

� = �1; x : A by de�nition CuBase

	 ` % 2 j�1; x : Aj by assumption

) % = %1;M=x by de�nition 7.24

) 	 `M 2 jAj by de�nition 7.24

) (%1;M=x)(x) = M by de�nition SbaInd

) %(x) = M by de�nition

C CANONICAL FORM THEOREM 91

Case: �2 = �0
2
; y : A0; x 6= y

� = (�1; x : A)[(�0
2
; y : A0) by assumption

� = (�1; x : A)[�0
2
; y : A0 by de�nition CuInd

	 ` % 2 j(�1; x : A)[�0
2
; y : A0j by assumption

) % = %0
1
;M 0=y by de�nition 7.24

) 	 `M 0 2 jA0j by de�nition 7.24

) 	 ` %0
1
2 j(�1; x : A)[�0

2
j by de�nition 7.24

) %0
1
(x) = M by ind. hyp.

) 	 `M 2 jAj by ind. hyp.

) (%0
1
;M 0=y)(x) = M by de�nition SbaInd

) %(x) = M by de�nition

2

Lemma 7.34 (Properties of logical relation for contexts)

1. If � = (�1; x : A) [�2 and 	 ` �; % 2 [�; �] then �(x) = M and � `M 2 [[A]]

2. If � = (�1; x : A) [�2 and 	 ` �; % 2 [�; �] then %(x) = M and 	 `M 2 jAj

Proof: 1. 	 ` �; % 2 [�; �] by assumption

) ` � 2 [[�]] by de�nition 7.25

) �(x) = M by lemma 7.32

) � `M 2 [[A]] by lemma 7.32

2. 	 ` �; % 2 [�; �] by assumption

) 	 ` % 2 j�j by de�nition 7.25

) %(x) = M by lemma 7.33

) 	 `M 2 jAj by lemma 7.33

2

Lemma 7.35 (Extending logical relations for contexts) If 	 ` �; % 2 [�; �] and 	 ` V 2

jAj then 	 ` �; %; V=x 2 [�; �; x : A]

Proof: 	 ` �; % 2 [�; �] by assumption

) ` � 2 [[�]] by de�nition 7.25

) 	 ` % 2 j�j by de�nition 7.25

) 	 ` %; V=x 2 j�; x : Aj by de�nition 7.24

) 	 ` �; %; V=x 2 [�; �; x : A] by de�nition 7.25

2

Lemma 7.36 (Identity substitution for arbitrary context)

For all 	 the following holds: 	 ` id	 2 j	j

92 C CANONICAL FORM THEOREM

Proof: by induction over 	:

Case: 	 = �:

� ` � 2 j�j by de�nition 7.24

� ` id� 2 j�j by de�nition IdEmpty

Case: 	 = 	0; x : B:

	0 ` id	0 2 j	0j by ind. hyp.

) 	0; x : B ` id	0 2 j	0j by lemma 7.26 (1)

	0; x : B = 	0; x : B [� by de�nition CuBase

) (0; x : B)(x) = B by de�nition 2.2

) 	0; x : B ` x # B by application of AtVar

) 	0; x : B ` x 2 jBj by lemma 7.17 (2)

) 	0; x : B ` id	0 ; x=x 2 j	0; x : Bj by de�nition 7.24

) 	0; x : B ` id	0;x:B 2 j	0; x : Bj by application of IdNonEmpty

2

Lemma 7.37 (Identity substitution for context)

For all 	 the following holds: 	 ` �; id	 2 [�;]

Proof: 	 ` id	 2 j	j by lemma 7.36

` � 2 [[�]] by de�nition 7.23

) 	 ` �; id	 2 [�;] by de�nition 7.25

2

Lemma 7.38 (Strengthening lemma)

Let �̂; � [�� [�̂ ` (id
�̂
; id� [%[id

�̂
) : (�̂; � [~� [�̂)

1. If �̂; � [�̂ `M : A then M = [id
�̂
; id� [% [id

�̂
](M)

2. If �̂; � [�̂ ` � : hB) Ai(�0) then � = [id
�̂
; id� [%[id

�̂
](�)

3. If �̂; � [�̂ `
 : h!i(�0) then
 = [id
�̂
; id� [% [id

�̂
](
)

Proof: by induction over D :: �̂; � [�̂ ` M : A, D :: �̂; � [�̂ ` � : hB) Ai(�0) and D ::

�̂; � [�̂ `
 : h!i(�0):

1. Case: D =
� [�̂(x) = A

TpVarReg
�̂; � [�̂ ` x : A

:

� [�̂(x) = A by assumption

) �1; x : A [�2 or �̂1; x : A [�̂2 by lemma 6.7

C CANONICAL FORM THEOREM 93

(a) � = �1; x : A [�2:

) x = [id
�̂
; id� [% [id

�̂
](x) by de�nition

(b) �̂ = �̂1; x : A [�̂2:

) x = [id
�̂
; id� [% [id

�̂
](x) by de�nition

Case: D =
�̂(x) = A

TpVarMod
�̂; � [�̂ ` x : A

:

�̂(x) = A by assumption

) x = [id
�̂
; id� [% [id

�̂
](x) by de�nition

Case: D =
�(c) = B

TpConst
�̂; � [�̂ ` c : B

:

c = [id
�̂
; id� [%[id

�̂
](c) by de�nition SBConst

Case: D =
�̂; � [�̂; x : A1 `M : A2

TpLam
�̂; � [�̂ ` �x :A1:M : A1 ! A2

:

M = [id
�̂
; id� [% [id

�̂;x:A1

](M) by ind. hyp. (1)

M = [id
�̂
; id� [% [id

�̂
; x=x](M) by de�nition IdNonEmpty

) �x :A1:M = �x :A1: [id�̂; id� [%[id
�̂
; x=x](M) by de�nition

) �x :A1:M = [id
�̂
; id� [%[id

�̂
](�x :A1:M) by de�nition SBLam

Case: D =
�̂; � [�̂ `M1 : A2 ! A1 �̂; � [�̂ `M2 : A2

TpApp
�̂; � [�̂ `M1 M2 : A1

:

M1 = [id
�̂
; id� [%[id

�̂
](M1) by ind. hyp. (1)

M2 = [id
�̂
; id� [%[id

�̂
](M2) by ind. hyp. (1)

) M1 M2 = [id
�̂
; id� [%[id

�̂
](M1 M2) by de�nition SBApp

Case: D =
�̂; � [�̂ `M1 : A1 �̂; � [�̂ `M2 : A2

TpPair
�̂; �[�̂ ` hM1;M2i : A1 � A2

:

M1 = [id
�̂
; id� [%[id

�̂
](M1) by ind. hyp. (1)

M2 = [id
�̂
; id� [%[id

�̂
](M2) by ind. hyp. (1)

) hM1;M2i = [id
�̂
; id� [% [id

�̂
](hM1;M2i) by de�nition SBPair

Case: D =
�̂; � [�̂ `M : A1 �A2

TpFst
�̂; � [�̂ ` fstM : A1

:

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

) fstM = [id
�̂
; id� [% [id

�̂
](fstM) by de�nition SBFst

Case: D =
�̂; � [�̂ `M : A1 �A2

TpSnd
�̂; �[�̂ ` snd M : A2

:

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

) snd M = [id
�̂
; id� [% [id

�̂
](snd M) by de�nition SBSnd

Case: D =
�̂; � `M : A

TpBox
�̂; � [�̂ ` box M : 2A

:

94 C CANONICAL FORM THEOREM

�̂; �[�� [�̂ ` (id
�̂
; id� [% [id

�̂
) : (�̂; � [~� [�̂) by assumption

) �̂; � ` (id
�̂
; �) : (�̂; �) by lemma 6.19

) �̂; � [� [� ` (id
�̂
; � [� [�) : (�̂; � [� [�) by de�nition

) M = [id
�̂
; � [� [�](M) by ind. hyp. (1)

) M = [id
�̂
; �](M) by de�nition

) box M = box [id
�̂
; �](M) by de�nition

) box M = [id
�̂
; id� [% [id

�̂
](boxM) by de�nition SBBox

Case: D =
�̂; � [�̂ `M1 : 2A1 �̂; x : A1; � [�̂ `M2 : A2

TpLet
�̂; � [�̂ ` let box x = M1 in M2 : A2

:

M1 = [id
�̂
; id� [%[id

�̂
](M1) by ind. hyp.

M2 = [id
�̂;x:A1

; id� [% [id
�̂
](M2) by ind. hyp. (1)

M2 = [id
�̂
; x=x; id� [%[id

�̂
](M2) by de�nition IdNonEmpty

) (let box x = M1 in M2) =

(let box x = [id
�̂
; id� [% [id

�̂
](M1) in [id�̂; x=x; id� [%[id

�̂
](M2)) by de�nition

) let box x = M1 in M2 = [id
�̂
; id� [% [id

�̂
](let box x = M1 in M2) by de�nition

SBLet

Case: D =
�̂; � [�̂ `M : 2B �̂; �[�̂ ` � : hB) Ai(�0)

TpCase
�̂; � [�̂ ` case hAiM h�i : C� (B;A;B)

:

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

� = [id
�̂
; id� [% [id

�̂
](�) by ind. hyp. (2)

) case hAiM h�i = [id
�̂
; id� [% [id

�̂
](case hAiM h�i) by de�nition SBCase

Case: D =
�̂; � [�̂ `M : 2B ` ! : � �̂; �[�̂ `
 : h!i(�0)

TpIt
�̂; � [�̂ ` it h!iM h
i : h!i(B)

:

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

 = [id
�̂
; id� [%[id

�̂
](
) by ind. hyp. (3)

) it h!iM h
i = [id
�̂
; id� [% [id

�̂
](it h!iM h
i) by de�nition SBIt

2. Case: D = TmBase
�̂; � [�̂ ` � : hB) Ai(�)

:

� = [id
�̂
; id� [%[id

�̂
](�) by de�nition SBXiEmpty

Case: D =
�̂; � [�̂ ` � : hB) Ai(�) �̂; � [�̂ `M : C (B;A;B0)

TmInd
�̂; � [�̂ ` (� j c)M) : hB) Ai(�; c : B0)

:

� = [id
�̂
; id� [% [id

�̂
](�) by ind. hyp. (2)

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

) (� j c)M) =

([id
�̂
; id� [% [id

�̂
](�) j c) [id

�̂
; id� [% [id

�̂
](M)) by de�nition

) (� j c)M) = [id
�̂
; id� [% [id

�̂
](� j c)M) by de�nition SBXi

3. Case: D = TrBase
�̂; � [�̂ ` � : h!i(�)

:

� = [id
�̂
; id� [%[id

�̂
](�) by de�nition SBOmegaEmpty

C CANONICAL FORM THEOREM 95

Case: D =
�̂; � [�̂ `
 : h!i(�) �̂; � [�̂ `M : h!i(B0)

TrInd
�̂; �[�̂ ` (
 j c 7!M) : h!i(�; c : B0)

:

 = [id
�̂
; id� [%[id

�̂
](
) by ind. hyp. (3)

M = [id
�̂
; id� [% [id

�̂
](M) by ind. hyp. (1)

) (
 j c 7!M) =

([id
�̂
; id� [% [id

�̂
](
) j c 7! [id

�̂
; id� [%[id

�̂
](M)) by de�nition

) (
 j c 7!M) = [id
�̂
; id� [%[id

�̂
](
 j c 7!M) by de�nition SBOmega

2

Lemma 7.42 (Preservation of Preconditions and Postconditions)

1. Pre#B (; B0) and 	(x) = B0 then Post#B (B0)

2. Pre#B (; B0) and �(c) = B0 then Post#B (B0)

3. Pre#B (; B2) implies Pre#B (; B1 ! B2)

4. Pre#B (; B2) and Post#B (B1 ! B2) implies Pre*B (; B1) and Post#B (B2)

5. Pre*B (; B1 ! B2) implies Pre*B (; x : B1; B2)

6. For all pure types B: Pre*B (�; B)

Proof:

1. Pre#B (; B0) by assumption (1)

) �(B0) JEB �(B) by de�nition 7.39

) 	 JB �(B) by de�nition 7.39

	(x) = B0 by assumption (1)

) 	 = (1; x : B
0) [2 by de�nition 2.2

) �(B0) JEB �(B) implies that forall y 2 Source(B0) : y JB �(B) by lemma 6.32

) forall y 2 Source(B0) : y JB �(B) by de�nition

) Post#B (B0) by de�nition

2. �(c) = B0 by assumption (2)

Let y 2 Source(B0) by assumption

) y JB �(B0) by lemma 6.30

Pre#B (; B0) by assumption (2)

) �(B0) JEB �(B) by de�nition 7.39

) y JB �(B) by lemma 6.30

) forall y 2 Source(B0) : y JB �(B) by de�nition

) Post#B (B0) by de�nition

96 C CANONICAL FORM THEOREM

3. Pre#B (; B2) by assumption (3)

) �(B2) JEB �(B) by de�nition 7.39

) �(B2) = �(B1 ! B2) by de�nition 4.15

) �(B1 ! B2) JEB �(B) by de�nition

) 	 JB �(B) by de�nition 7.39

) Pre#B (; B1 ! B2) by de�nition 7.39

4. Pre#B (; B2) by assumption (4)

) �(B2) JEB �(B) by de�nition 7.39

) 	 JB �(B) by de�nition 7.39

Post#B (B1 ! B2) by assumption (4)

) forall y 2 Source(B1 ! B2) : y JB �(B) by de�nition 7.41

) Source(B1 ! B2) = Source(B1) [f�(B1)g [Source(B2) by de�nition 4.16

) forall y 2 Source(B1) : y JB �(B) by de�nition

) forall y 2 Source(B2) : y JB �(B) by de�nition

) Post#B (B2) by de�nition 7.41

) forall y 2 f�(B1)g : y JB �(B) by de�nition

) �(B1) JB �(B) by de�nition

) �(B1) JEB �(B) by de�nition

) Pre#B (; B1) by de�nition 7.39

forall B0 2 PCT(B1) : Source(B
0) � Source(B1) by lemma 6.33

) forall B0 2 PCT(B1) : forall y 2 Source(B0) : y 2 Source(B1) by de�nition

) forall B0 2 PCT(B1) : forall y 2 Source(B0) : y JB �(B) by de�nition

) forall B0 2 PCT(B1) : if �(B
00) JEB �(B)then forall y 2 Source(B0) : y JB �(B)

by de�nition

) Pre*B (; B1) by de�nition 7.40

5. Pre*B (; B1 ! B2) by assumption (5)

) Pre#B (; B1 ! B2) by de�nition 7.40

) forall B0 2 PCT(B1 ! B2) : if �(B
0) JEB �(B) then forall y 2 Source(B0) : y JB �(B)

by de�nition 7.40

) �(B1 ! B2) JEB �(B) by de�nition 7.39

) 	 JB �(B) by de�nition 7.39

) �(B1 ! B2) = �(B2) by de�nition 4.15

) �(B2) JEB �(B) by de�nition

) PCT(B1 ! B2) = fB1g [PCT(B2) by de�nition 4.22

C CANONICAL FORM THEOREM 97

) if �(B1) JEB �(B) then forall y 2 Source(B1) : y JB �(B) by de�nition

) 	; x : B1 JB �(B) by de�nition 7.39

) Pre#B (; x : B1; B2) by de�nition 7.39

) forall B0 2 PCT(B2) : if �(B
0) JEB �(B) then forall y 2 Source(B0) : y JB �(B)

by de�nition 7.40

) Pre*B (; x : B1; B2) by de�nition 7.40

6. Let B be a pure Type by assumption (6)

�(B) = �(B) by de�nition

) �(B) JEB �(B) by de�nition 6.29

� JB �(B) by de�nition 6.31

) Pre#B (�; B) by de�nition 7.39

Let B0 2 PCT(B) by assumption

Assume �(B0) JEB �(B) by assumption

Let y 2 Source(B0) by assumption

) y <B0 �(B0) by de�nition 4.19

) y CB �(B0) by lemma 6.34

) y JB �(B0) by de�nition 4.24

) y JB �(B) by lemma 6.30 (2)

) forall B0 2 PCT(B) : if �(B0) JEB �(B) then forall y 2 Source(B0) : y JB �(B)

by logic

) Pre*B (�; B) by de�nition 7.40

2

Lemma 7.43 (Auxiliary lemma for iterator)

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	+ ~	 `
 2 [[h!i(�0; 	̂)]] and �0 = S�(�; I(�;B))

1. If 	̂ ` V # B0 and Pre #B (̂; B0) then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]] and

Post#B (B0)

2. If 	̂ ` V * B0 and Pre*B (̂; B0) then 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(B0)]]

Proof: by induction over D :: 	̂ ` V * B0 and E :: 	̂ ` V # B0

1. Case: E =
	̂(x) = B0

AtVar
	̂ ` x # B0

	̂(x) = B0 by assumption

) 	̂ = 	̂1; x : B
0 [̂2 by de�nition 2.2

) ~	 = ~	1; u : h!i(B
0) [~	0

2
by lemma 7.14

98 C CANONICAL FORM THEOREM

) u = h!;
i(x) by lemma 7.14

) (id	 [%)(u) = M by lemma 7.34

) 	 [�	 `M 2 [[h!i(B0)]] by lemma 7.34

) [�; id	 [%](u) = M by de�nition SBVar

) 	 [�	 ` [�; id	 [%](u) 2 [[h!i(B0)]] by de�nition

) 	 [�	 ` [�; id	 [%](h!;
i(x)) 2 [[h!i(B0)]] by de�nition

Pre#B (̂; B0) by assumption

) Post#B (B0) by lemma 7.42 (1)

Case: E =
�(c) = B0

AtConst
	̂ ` c # B0

�(c) = B0 by assumption

Pre#B (̂; B0) by assumption

) Post#B (B0) by lemma 7.42 (2)

Case: �(B0) 2 I(�;B):

�0(c) = B0 by assumption

�0 = �0

1
; c : B0 [�0

2
by de�nition 4.17

) 	 `M 2 [[h!i(B0)]] by lemma 7.12

) M = h!;
i(c) by lemma 7.12

) �; 	 `M : h!i(B0) by de�nition 7.4

) �; 	 [� `M : h!i(B0) by de�nition CuBase

	 [�	 ` �; id	 [% 2 [�; 	 [~] by assumption

) �; 	 [�	 ` (�; id	 [%) : (�; 	 [~) by lemma 7.31

) �; 	 [�	 [� ` (�; id	 [%[�) : (�; 	 [~	 [�) by de�nition CuBase

) M = [�; id	 [% [�](M) by lemma 7.38

) M = [�; id	 [%](M) by de�nition CuBase

) M = [�; id	 [%](h!;
i(c)) by de�nition

) �	 � � by lemma 6.2

) 	 [�	 � 	 [� by lemma 6.5

) 	 [�	 � 	 by de�nition CuBase

) 	 [�	 `M 2 [[h!i(B0)]] by lemma 7.9 (1)

) 	 [�	 ` [�; id	 [%](h!;
i(c)) 2 [[h!i(B0)]] by de�nition

Case: �(B0) =2 I(�;B):

) c : B0 =2 �0 by de�nition

) �0(c) is unde�ned by de�nition

Pre#B (̂; B0) by assumption

) �(B0) JEB �(B) by de�nition 7.39

) �(B) 6JB �(B0) by lemma 6.37

) Source(B0) \ I(�;B) = ; by lemma 6.35

) h!i(B0) = B0 by lemma 6.36

	 + ~	 `
 2 [[h!i(�0; 	̂)]] by assumption

)
(c) is unde�ned by lemma 7.13

) h!;
i(c) = c by de�nition ElConst

) �(c) = B0 by assumption

C CANONICAL FORM THEOREM 99

) 	 ` c # B0 by application of AtVar

) 	 ` c 2 jB0j by lemma 7.17

) 	 ` c 2 [[B0]] by lemma 7.21

) 	 ` c 2 [[h!i(B0)]] by de�nition 4.26

[�; id	 [%](c) = c by de�nition SBConst

) 	 ` [�; id	 [%](c) 2 [[h!i(B0)]] by lemma 7.21

) 	 ` [�; id	 [%](h!;
i(c)) 2 [[h!i(B0)]] by de�nition

Case: E =

D1

	̂ ` V1 # B
0

2
! B0

1

D2

	̂ ` V2 * B0

2

AtApp
	̂ ` V1 V2 # B

0

1

Pre#B (̂; B0

1
) by assumption

) Pre#B (̂; B0

2
! B0

1
) by lemma 7.42 (3)

) 	 [�	 ` [�; id	 [%](h!;
i(V1)) 2 [[h!i(B0

2
! B0

1
)]] by ind. hyp. (1) on D1

) 	 [�	 ` [�; id	 [%](h!;
i(V1)) 2 [[h!i(B0

2
)! h!i(B0

1
)]] by de�nition 4.26

) Post#B (B0

2
! B0

1
) by ind. hyp. (1) on D1

) Pre*B (̂; B0

2
) by lemma 7.42 (4)

) Post#B (B0

1
) by lemma 7.42 (4)

) 	 [�	 ` [�; id	 [%](h!;
i(V2)) 2 [[h!i(B0

2
)]] by ind. hyp. (2) on D2

) 	 [�	 ` [�; id	 [%](h!;
i(V1)) [�; id	 [%](h!;
i(V2)) 2 [[h!i(B0

1
)]] by lemma 7.22

) 	 [�	 ` [�; id	 [%](h!;
i(V1) h!;
i(V2)) 2 [[h!i(B0

1
)]] by application of SbApp

) 	 [�	 ` [�; id	 [%](h!;
i(V1 V2)) 2 [[h!i(B0

1
)]] by application of ElApp

2. Case: D =

D1

	̂ ` V # a
CanAt

	̂ ` V * a

Pre*B (̂; a) by assumption

) Pre#B (̂; a) by de�nition 7.40

) 	 [�	 ` [�; id	 [%](h!;
i(V)) 2 [[h!i(a)]] by ind. hyp. (1) on D1

Case: D =
	̂; x : B0

1
` V * B0

2

CanLam
	̂ ` �x :B0

1
: V * B0

1
! B0

2

(~	; u : h!i(B0

1
))(u) = h!i(B0

1
) by de�nition

) ~	; u : h!i(B0

1
) ` u # h!i(B0

1
) by application of AtVar

) ~	; u : h!i(B0

1
) ` u 2 jh!i(B0

1
)j by lemma 7.17

) ~	; u : h!i(B0

1
) ` u 2 [[h!i(B0

1
)]] by lemma 7.21

) 	+ ~	 `
 2 [[h!i(�0; 	̂)]] by assumption
~	 � ~	 by de�nition CeBase

) ~	; u : h!i(B0

1
) � ~	 by de�nition CeInd

) 	+ ~	; u : h!i(B0

1
) `
 2 [[h!i(�0; 	̂)]] by lemma 7.10

) 	+ ~	; u : h!i(B0

1
) `
 j x 7! u 2 [[h!i(�0; 	̂; x : B0

1
)]] by de�nition 7.5

Let �	00 � 	 [�	

100 C CANONICAL FORM THEOREM

) �	00 = 	 [�	0 by lemma 6.4

) �	0 � �	 by lemma 6.4

Let 	 [�	0 ` V 0 2 jh!i(B0

1
)j

) 	 [�	 ` �; id	 [% 2 [�; 	 [~] by assumption

) 	 [�	0 ` �; id	 [% 2 [�; 	 [~] by lemma 7.26

) 	 [�	0 ` �; (id	 [%); V 0=u 2 [�; ([~); u : h!i(B0

1
)] by lemma 7.35

) 	 [�	0 ` �; id	 [%; V 0=u 2 [�; 	 [~	; u : h!i(B0

1
)] by de�nition CeInd

Pre*B (̂; B0

1
! B0

2
) by assumption

) Pre*B (̂; x : B0

1
; B0

2
) by lemma 7.42 (5)

) 	 [�	0 ` [�; id	 [%; V 0=u](h!;
 j x 7! ui(V)) 2 [[h!i(B0

2
)]] by ind. hyp. (2)

) 	 [�	0 ` [V 0=u]([�; id	 [%; u=u](h!;
 j x 7! ui(V))) 2 [[h!i(B0

2
)]]

by lemma 6.17 (1)

) 	 [�	 ` �u :h!i(B0

1
): [�; id	 [%; u=u](h!;
 j x 7! ui(V)) 2 jh!i(B0

1
)! h!i(B0

2
)j

by de�nition 7.4

) 	 [�	 ` �u :h!i(B0

1
): [�; (id	 [%); u=u](h!;
 j x 7! ui(V)) 2 jh!i(B0

1
)! h!i(B0

2
)j

by de�nition CuInd

) 	 [�	 ` [�; id	 [%](�u :h!i(B0

1
): h!;
 j x 7! ui(V)) 2 jh!i(B0

1
)! h!i(B0

2
)j

by de�nition SbLam

) 	 [�	 ` [�; id	 [%](h!;
i(�x :B0

1
: V)) 2 jh!i(B0

1
)! h!i(B0

2
)j by de�nition ElLam

) 	 [�	 ` [�; id	 [%](h!;
i(�x :B0

1
: V)) 2 jh!i(B0

1
! B0

2
)j by de�nition 4.26

) 	 [�	 ` [�; id	 [%](h!;
i(�x :B0

1
: V)) 2 [[h!i(B0

1
! B0

2
)]] by lemma 7.21

2

Lemma 7.44 (Every canonical element is member of the logical relation)

1. If 	 ` V # B and 	0 ` �; % 2 [�;] then 	0 ` [�; %](V) 2 [[B]]

2. If 	 ` V * B and 	0 ` �; % 2 [�;] then 	0 ` [�; %](V) 2 [[B]]

Proof: by induction over D :: 	 ` V # B and E :: 	 ` V * B:

1. Case: D =
	(x) = B

AtVar
	 ` x # B

	(x) = B by assumption

) 	 = 	1; x : B [2 by de�nition 2.2

	0 ` �; % 2 [�;] by assumption

) %(x) = M by lemma 7.34 (2)

) [�; %](x) =M by de�nition SBVar

) 	0 `M 2 [[B]] by lemma 7.34 (2)

) 	0 ` [�; %](x) 2 [[B]] by de�nition

C CANONICAL FORM THEOREM 101

Case: D =
�(c) = B

AtConst
	 ` c # B

�(c) = B by assumption

) 	0 ` c # B by application of AtConst

) 	0 ` c 2 jBj by lemma 7.17 (2)

) 	0 ` c 2 [[B]] by de�nition 7.4

) 	0 ` [�; %](c) 2 [[B]] by application of SBConst

Case: D =

D1

	 ` V1 # B2 ! B1

E1
	 ` V2 * B2

AtApp
	 ` V1 V2 # B1

	0 ` [�; %](V1) 2 [[B2 ! B1]] by ind. hyp. (1) on D1

	0 ` [�; %](V2) 2 [[B2]] by ind. hyp. (2) on E1

) 	0 ` [�; %](V1) [�; %](V2) 2 [[B1]] by lemma 7.22

) 	0 ` [�; %](V1 V2) 2 [[B1]] by de�nition SBApp

2. Case: E =

D1

	 ` V # a
CanAt

	 ` V * a

	0 ` [�; %](V) 2 [[a]] by ind. hyp. (1) on D1

Case: E =

E1
	; x : B1 ` V * B2

CanLam
	 ` �x :B1: V * B1 ! B2

Let 	00 � 	0 by assumption

Let 	00 `W 2 jB1j by assumption

	0 ` �; % 2 [�;] by assumption

) 	00 ` �; % 2 [�;] by lemma 7.26 (1)

) 	00 ` �; %;W=x 2 [�; 	; x : B1] by lemma 7.35

) 	00 ` [�; %;W=x](V) 2 [[B2]] by ind. hyp. (2)

) 	00 ` [W=x]([�; %; x=x](V)) 2 [[B2]] by lemma 6.17 (1)

) 	0 ` �x :B1: [�; %; x=x](V) 2 jB1 ! B2j by de�nition 7.4

) 	0 ` [�; %](�x :B1: V) 2 jB1 ! B2j by de�nition SBLam

) 	0 ` [�; %](�x :B1: V) 2 [[B1 ! B2]] by lemma 7.21

2

Lemma 7.45 (Properties of transformation types:)

If 	 ` V * B then � ` �f	g: V 2 [[�f	g: B]]

Proof: by induction over 	:

102 C CANONICAL FORM THEOREM

Case: 	 = �:

) � ` �; � 2 [�; �] by de�nition 7.23, 7.24, 7.25

) � ` [�; �](V) 2 [[B]] by lemma 7.44

) �; � ` V : B by lemma 6.25

) [�; �](V) = V by lemma 6.23

) � ` V 2 [[B]] by de�nition

) � ` �f�g: V 2 [[B]] by de�nition 5.8

) � ` �f�g: V 2 [[�f�g: B]] by de�nition 5.9

Case: 	 = 	0; x : B0:

) 	0; x : B0 ` V * B by assumption

) 	0 ` �x :B0: V * B0 ! B by application of CanLam

) � ` �f	0g: �x :B0: V 2 [[�f	0g: (B0 ! B)]] by ind. hyp.

) � ` �f	0; x : B0g: V 2 [[�f	0g: (B0 ! B)]] by de�nition 5.8

) � ` �f	0; x : B0g: V 2 [[�f	0; x : B0g: B]] by de�nition 5.9

2

Lemma 7.46 (Auxiliary lemma for case)

If 	 [�	 ` �; id	 [% 2 [�; 	 [~], 	+ ~	 ` � 2 [[hB) Ai(�0; 	̂)]] and �0 = S(�; �(B))

1. If 	̂ ` V # B0 and �f	̂g: �(B) = B and �(B0) = �(B) then 	 [�	 `

[�; id	 [%](fB) A; �; 	̂g(V)) 2 [[C (B;A;B0)]]

2. If 	̂ ` V * B0 and �f	̂g: B0 = B then 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V)) 2

[[C� (B;A;B0)]]

Proof: by induction over D :: 	 ` V # B and E :: 	 ` V * B:

1. Case: D =
	0(x) = B0

AtVar
	̂ ` x # B0

	̂(x) = B0 by assumption

) 	̂ = 	̂1; x : B
0 [̂2 by de�nition 2.2

) ~	 = ~	1; u : C (B;A;B
0)[~	0

2
by lemma 7.16

) u = fB) A; �; 	̂g(x) by lemma 7.16

) (id	 [%)(u) = M by lemma 7.34

) 	 [�	 `M 2 [[C (B;A;B0)]] by lemma 7.34

) [�; id	 [%](u) = M by de�nition SBVar

) 	 [�	 ` [�; id	 [%](u) 2 [[C (B;A;B0)]] by de�nition

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(x)) 2 [[C (B;A;B0)]] by de�nition

C CANONICAL FORM THEOREM 103

Case: D =
�(c) = B0

AtConst
	0 ` c # B0

�(B0) = �(B) by assumption

) c : B0 2 S(�; �(B)) by de�nition 4.17

) c : B0 2 �0 by de�nition

) �0 = �0

1
; c : B0 [�0

2
by de�nition 2.2

) 	 `M 2 [[C (B;A;B0)]] by lemma 7.15

) M = fB) A;
; 	̂g(c) by lemma 7.15

) �; 	 `M : C (B;A;B0) by de�nition 7.4

) �; 	 [� `M : C (B;A;B0) by de�nition CuBase

	 [�	 ` �; id	 [% 2 [�; 	 [~] by assumption

) �; 	 [�	 ` (�; id	 [%) : (�; 	 [~) by lemma 7.31

) �; 	 [�	 [� ` (�; id	 [%[�) : (�; 	 [~	 [�) by de�nition CuBase

) M = [�; id	 [% [�](M) by lemma 7.38

) M = [�; id	 [%](M) by de�nition CuBase

) M = [�; id	 [%](fB) A;
; 	̂g(c)) by de�nition

) �	 � � by lemma 6.2

) 	 [�	 � 	 [� by lemma 6.5

) 	 [�	 � 	 by de�nition CuBase

) 	 [�	 `M 2 [[C (B;A;B0)]] by lemma 7.9 (1)

) 	 [�	 ` [�; id	 [%](fB) A;
; 	̂g(c)) 2 [[C (B;A;B0)]] by de�nition

Case: D =

D1

	̂ ` V1 # B
0

2
! B0

1

E1
	̂ ` V2 * B0

2

AtApp
	̂ ` V1 V2 # B

0

1

�(B0

1
) = �(B) by assumption

) �(B0

2
! B0

1
) = �(B) by de�nition 4.15

	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1)) 2 [[C (B;A; (B0

2
! B0

1
))]]

by ind. hyp. (1) on D1

�f	̂g: �(B) = B by assumption

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1)) 2 [[C (�f	̂g: �(B); A; (B0

2
! B0

1
))]]

by de�nition

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1)) 2 [[2�f	̂g: B0

2
! C (�f	̂g: �(B); A; B0

1
)]]

by de�nition

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1)) 2 [[2�f	̂g: B0

2
! C (B;A;B0

1
)]]

by de�nition

	̂ ` V2 * B0

2
by assumption

) � ` �f	̂g: V2 2 [[�f	̂g: B0

2
]] by lemma 7.45

) �; � ` �f	̂g: V2 : �f	̂g: B
0

2
by de�nition 7.4

) �f	̂g: V2 = [�; �](�f	̂g: V2) by lemma 6.23

) � ` [�; �](�f	̂g: V2) 2 [[�f	̂g: B0

2
]] by de�nition

104 C CANONICAL FORM THEOREM

) 	 [�	 ` box [�; �](�f	̂g: V2) 2 j2(�f	̂g: B
0

2
)j by de�nition 7.4

) 	 [�	 ` box [�; �](�f	̂g: V2) 2 [[2(�f	̂g: B0

2
)]] by lemma 7.21

) 	 [�	 ` [�; id	 [%](box �f	̂g: V2) 2 [[2(�f	̂g: B0

2
)]] by de�nition SBBox

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1)) [�; id	 [%](box �f	̂g: V2) 2 [[C (B;A;B0

1
)]]

by lemma 7.22

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1) (box �f	̂g: V2)) 2 [[C (B;A;B0

1
)]]

by de�nition SBApp

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(V1 V2)) 2 [[C (B;A;B0

1
)]] by de�nition SeApp

2. Case: E =

D1

	̂ ` V # a
CanAt

	̂ ` V * a

�f	̂g: a = B by assumption

) �(B) = �(�f	̂g: a) = �(a) = a by lemma 6.28, by de�nition 4.15

) �f	̂g: �(B) = B by de�nition

) 	 [�	 ` [�; id	 [%](fB) A; �;V g(̂)) 2 [[C (B;A; a)]] by ind. hyp. (1)

) 	 [�	 ` [�; id	 [%](fB) A; �;V g(̂)) 2 [[C� (B;A; a)]] by de�nition 5.12

Case: E =

E1
	̂; x : B0

1
` V * B0

2

CanLam
	̂ ` �x :B0

1
: V * B0

1
! B0

2

(~	; u : C (B;A;B0

1
))(u) = C (B;A;B0

1
) by de�nition

) ~	; u : C (B;A;B0

1
) ` u # C (B;A;B0

1
) by application of AtVar

) ~	; u : C (B;A;B0

1
) ` u 2 jC (B;A;B0

1
)j by lemma 7.17

) ~	; u : C (B;A;B0

1
) ` u 2 [[C (B;A;B0

1
)]] by lemma 7.21

	 + ~	 ` � 2 [[hB) Ai(�0; 	̂)]] by assumption
~	 � ~	 by de�nition CeBase

) ~	; u : C (B;A;B0

1
) � ~	 by de�nition CeInd

) 	+ ~	; u : C (B;A;B0

1
) ` � 2 [[hB) Ai(�0; 	̂)]] by lemma 7.11

) 	+ ~	; u : C (B;A;B0

1
) ` � j x) u 2 [[hB) Ai(�0; 	̂; x : B0

1
)]] by de�nition 7.7

Let �	00 � 	 [�	

) �	00 = 	 [�	0 by lemma 6.4

) �	0 � �	 by lemma 6.4

Let 	 [�	0 ` V 0 2 jC (B;A;B0

1
)j

) 	 [�	 ` �; id	 [% 2 [�; 	 [~] by assumption

) 	 [�	0 ` �; id	 [% 2 [�; 	 [~] by lemma 7.26

) 	 [�	0 ` �; (id	 [%); V 0=u 2 [�; ([~); u : C (B;A;B0

1
)] by lemma 7.35

) 	 [�	0 ` �; id	 [%; V 0=u 2 [�; 	 [~	; u : C (B;A;B0

1
)] by de�nition CeInd

�f	̂g: B0

1
! B0

2
= B by assumption

) �f	̂; x : B0

1
g: B0

2
= B by de�nition 5.9

) 	 [�	0 ` [�; id	 [%; V 0=u](fB) A; � j x) u; 	̂; x : B0

1
g(V)) 2 [[C� (B;A;B0

2
)]]

C CANONICAL FORM THEOREM 105

by ind. hyp. (2)

) 	 [�	0 ` [V 0=u]([�; id	 [%; u=u](fB) A; � j x) u; 	̂; x : B0

1
g(V)))

2 [[C� (B;A;B0

2
)]] by lemma 6.17 (1)

) 	 [�	 ` �u :C (B;A;B0

1
): [�; id	 [%; u=u](fB) A; � j x) u; 	̂; x : B0

1
g(V))

2 jC (B;A;B0

1
)! C� (B;A;B0

2
)j by de�nition 7.4

) 	 [�	 ` �u :C (B;A;B0

1
): [�; (id	 [%); u=u](fB) A; � j x) u; 	̂; x : B0

1
g(V))

2 jC (B;A;B0

1
)! C� (B;A;B0

2
)j by de�nition CuInd

) 	 [�	 ` [�; id	 [%](�u :C (B;A;B0

1
): fB) A; � j x) u; 	̂; x : B0

1
g(V))

2 jC (B;A;B0

1
)! C� (B;A;B0

2
)j by de�nition SBLam

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(�x :B0

1
: V)) 2 jC (B;A;B0

1
)! C� (B;A;B0

2
)j

by de�nition SeLam

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(�x :B0

1
: V)) 2 jC� (B;A;B0

1
! B0

2
)j by de�nition

5.12

) 	 [�	 ` [�; id	 [%](fB) A; �; 	̂g(�x :B0

1
: V)) 2 [[C� (B;A;B0

1
! B0

2
)]] by lemma

7.21

2

Lemma 7.47 (Typing and logical relations) Let 	 ` �; % 2 [�; �]

1. If �;� `M : A then 	 ` [�; %](M) 2 [[A]]

2. If �;� ` � : hB) Ai(�0) then 	 + � ` [�; %](�) 2 [[hB) Ai(�0; �)]]

3. If �;� `
 : h!i(�0) then 	+ � ` [�; %](
) 2 [[h!i(�0; �)]]

Proof: by induction over D :: �; � `M : A

1. Case: D =
�(x) = A

TpVarReg
�;� ` x : A

�(x) = A by assumption

) � = �1; x : A [�2 by de�nition 2.2

	 ` �; % 2 [�; �] by assumption

) %(x) = M by lemma 7.34 (2)

) 	 `M 2 [[A]] by lemma 7.34 (2)

) [�; %](x) = M by de�nition SBVar

) 	 ` [�; %](x) 2 [[A]] by de�nition

Case: D =
�(x) = A

TpVarMod
�;� ` x : A

�(x) = A by assumption

) � = �1; x : A [�2 by de�nition 2.2

	 ` �; % 2 [�; �] by assumption

) �(x) = M by lemma 7.34 (1)

) � `M 2 [[A]] by lemma 7.34 (1)

106 C CANONICAL FORM THEOREM

) [�; %](x) = M by de�nition SBVar

) � ` [�; %](x) 2 [[A]] by de�nition

) 	 � � by lemma 6.2

) 	 ` [�; %](x) 2 [[A]] by lemma 7.9 (1)

Case: D =
�(c) = B

TpConst
�;� ` c : B

�(c) = B by assumption

) 	 ` c # B by application of AtConst

) 	 ` c 2 jBj by lemma 7.17 (2)

) 	 ` c ,! c : B by application of EvConst

) �; 	 ` c : B by application of TpConst

) 	 ` c 2 [[B]] by de�nition 7.4

) 	 ` [�; %](c) 2 [[B]] by de�nition SBConst

Case: D =
�; �; x : A1 `M : A2

TpLam
�;� ` �x :A1:M : A1 ! A2

Let 	0 � 	 by assumption

Let 	0 ` V 2 jA1j by assumption

) 	0 ` V 2 [[A1]] by lemma 7.21

	 ` �; % 2 [�; �] by assumption

) 	0 ` �; % 2 [�; �] by lemma 7.26 (2)

) 	0 ` �; %; V=x 2 [�; �; x : A1] by assumption

) 	0 ` [�; %; V=x](M) 2 [[A2]] by ind. hyp.

) 	0 ` [V=x]([�; %; x=x](M)) 2 [[A2]] by lemma 6.17 (1)

) 	 ` �x :A1: [�; %; x=x](M) 2 jA1 ! A2j by de�nition 7.4

) 	 ` [�; %](�x :A1:M) 2 jA1 ! A2j by de�nition SBLam

) 	 ` [�; %](�x :A1:M) 2 [[A1 ! A2]] by lemma 7.21

Case: D =

D1

�;� `M1 : A2 ! A1

D2

�;� `M2 : A2

TpApp
�;� `M1 M2 : A1

) 	 ` [�; %](M1) 2 [[A2 ! A1]] by ind. hyp. on D1

) 	 ` [�; %](M2) 2 [[A2]] by ind. hyp. on D2

) 	 ` [�; %](M1 M2) 2 [[A1]] by lemma 7.22

Case: D =

D1

�;� `M1 : A1

D2

�;� `M2 : A2

TpPair
�;� ` hM1;M2i : A1 � A2

) 	 ` [�; %](M1) 2 [[A1]] by ind. hyp. on D1

) 	 ` [�; %](M2) 2 [[A2]] by ind. hyp. on D2

) 	 ` h[�; %](M1); [�; %](M2)i 2 jA1 � A2j by de�nition 7.4

) 	 ` [�; %](hM1;M2i) 2 jA1 �A2j by de�nition SBPair

) 	 ` [�; %](hM1;M2i) 2 [[A1 �A2]] by lemma 7.21

C CANONICAL FORM THEOREM 107

Case: D =

D

�;� `M : A1 �A2

TpFst
�;� ` fst M : A1

) 	 ` [�; %](M) 2 [[A1 � A2]] by ind. hyp. on D

) �; 	 ` [�; %](M) : A1 �A2 by de�nition 7.4

) 	 ` [�; %](M) ,! V 0 : A1 � A2 by de�nition 7.4

) 	 ` V 0 2 jA1 �A2j by de�nition 7.4

) V 0 = hM1;M2i by de�nition 7.4

) 	 `M1 2 [[A1]] by de�nition 7.4

) 	 `M1 ,! V : A1 by de�nition 7.4

) 	 ` V 2 jA1j by de�nition 7.4

) �; 	 ` fst [�; %](M) : A1 by application of TpFst

) 	 ` fst [�; %](M) ,! V : A1 by application of EvFst

) 	 ` fst [�; %](M) 2 [[A1]] by de�nition 7.4

) 	 ` [�; %](fstM) 2 [[A1]] by de�nition SBFst

Case: D =
�; � `M : A1 �A2

TpSnd
�;� ` snd M : A2

analog

Case: D =
�; � `M : A

TpBox
�;� ` box M : 2A

	 ` �; % 2 [�; �] by assumption

) � ` �; � 2 [�; �] by lemma 7.27

) � ` [�; �](M) 2 [[A]] by ind. hyp.

) �; � ` [�; �](M) : A by de�nition 7.4

) �; 	 ` box [�; �](M) : 2A by application of TpBox

) 	 ` box [�; �](M) ,! box [�; �](M) : 2A by application of EvBox

) 	 ` box [�; �](M) 2 j2Aj by de�nition 7.4

) 	 ` box [�; �](M) 2 [[2A]] by de�nition 7.4

) 	 ` [�; %](boxM) 2 [[2A]] by de�nition SBBox

Case: D =

D1

�;� `M1 : 2A1

D2

�; x : A1; � `M2 : A2

TpLet
�;� ` let box x = M1 in M2 : A2

	 ` [�; %](M1) 2 [[2A1]] by ind. hyp. on D1

) 	 ` [�; %](M1) ,! V : 2A1 by de�nition 7.4

) �; 	 ` [�; %](M1) : 2A1 by de�nition 7.4

) 	 ` V 2 j2A1j by de�nition 7.4

) V = box M 0

1
by de�nition 7.4

) � `M 0

1
2 [[A1]] by de�nition 7.4

) 	 ` �;M 0

1
=x; % 2 [�; x : A1; �] by de�nition 7.25

) 	 ` [�;M 0

1
=x; %](M2) 2 [[A2]] by ind. hyp. on D2

108 C CANONICAL FORM THEOREM

) 	 ` [�;M 0

1
=x; %](M2) ,! V 0 : A2 by de�nition 7.4

) 	 ` V 0 2 jA2j by de�nition 7.4

) 	 ` [M 0

1
=x]([�; x=x; %](M2)) ,! V 0 : A2 by lemma 6.17 (2)

) 	 ` let box x = [�; %](M1) in [�; x=x; %](M2) ,! V 0 : A2 by application of EvLet

) 	 ` [�; %](let box x = M1 in M2) ,! V 0 : A2 by de�nition SBLet

	 ` �; % 2 [�; �] by assumption

) �; 	 ` (�; %) : (�; �) by lemma 7.31

) �; 	 ` [�; %](let box x = M1 in M2) : A2 by lemma 6.21 on D

) 	 ` [�; %](let box x = M1 in M2) 2 [[A2]] by de�nition 7.4

Case: D =

D1

�;� `M : 2B

D2

�;� ` � : hB) Ai(�0)
TpCase

�;� ` case hAiM h�i : C� (B;A;B)

�0 = S(�; �(B)) Side Condition

	 ` [�; %](M) 2 [[2B]] by ind. hyp. on D1

) 	 ` [�; %](M) ,! box M 0 : 2B by de�nition 7.4

) �; 	 ` [�; %](M) : 2B by de�nition 7.4

) 	 ` box M 0 2 j2Bj by de�nition 7.4

) � `M 0 2 [[B]] by de�nition 7.4

) � `M 0 * V 0 : B by lemma 7.17 (1)

) � ` V 0 * B by lemma 7.2 (1)

�; � ` � : hB) Ai(�0) by assumption

) 	+ � ` [�; %](�) 2 [[hB) Ai(�0; �)]] by ind. hyp. (2)

) �; 	 ` [�; %](�) : hB) Ai(�0) by lemma 7.8

) 	 ` �; id	 2 [�;] by de�nition 7.37

) 	 [� ` �; id	 [� 2 [�; 	 [�] by de�nition CuBase

�f�g: B = B by de�nition 5.9

) 	 [� ` [�; id	 [�](fB) A; �; �g(V 0)) 2 [[C� (B;A;B)]] by lemma 7.46

) 	 ` [�; id](fB) A; �; �g(V 0)) 2 [[C� (B;A;B)]] by de�nition CuBase

) �; 	 ` [�; id](fB) A; �; �g(V 0)) : C� (B;A;B) by de�nition 7.4

) fB) A; �; �g(V 0) = [�; id](fB) A; �; �g(V 0))

) 	 ` fB) A; �; �g(V 0) 2 [[C� (B;A;B)]] by de�nition

) 	 ` fB) A; �; �g(V 0) ,! V : C� (B;A;B) by de�nition 7.4

) 	 ` V 2 jC� (B;A;B)j by de�nition 7.4

) 	 ` case hAi [�; %](M) h[�; %](�)i ,! V : C� (B;A;B) by application of EvCase

) �; 	 ` case hAi [�; %](M) h[�; %](�)i : C� (B;A;B) by application of TpCase

) 	 ` case hAi [�; %](M) h[�; %](�)i 2 [[C� (B;A;B)]] by de�nition 7.4

) 	 ` [�; %](case hAiM h�i) 2 [[C� (B;A;B)]] by de�nition SBCase

Case: D =
�; � `M : 2B ` ! : � �;� `
 : h!i(�0)

TpIt
�;� ` it h!iM h
i : h!i(B)

�; � `M : 2B by assumption

C CANONICAL FORM THEOREM 109

	 ` [�; %](M) 2 [[2B]] by ind. hyp. (1)

) 	 ` [�; %](M) ,! box M 0 : 2B by de�nition 7.4

) �; 	 ` [�; %](M) : 2B by de�nition 7.4

) 	 ` box M 0 2 j2Bj by de�nition 7.4

) � `M 0 2 [[B]] by de�nition 7.4

) � `M 0 * V 0 : B by lemma 7.17 (1)

) � ` V 0 * B by lemma 7.2 (1)

�; � `
 : h!i(�0) by assumption

) 	+ � ` [�; %](
) 2 [[h!i(�0; �)]] by ind. hyp. (3)

) �; 	 ` [�; %](
) : h!i(�0) by lemma 7.6

) 	 ` �; id	 2 [�;] by de�nition 7.37

) 	 [� ` �; id	 [� 2 [�; 	 [�] by de�nition CuBase

) 	 [� ` [�; id	 [�](h!;
i(V
0)) 2 [[h!i(B)]] by lemma 7.43

) 	 ` [�; id](h!;
i(V
0)) 2 [[h!i(B)]] by de�nition CuBase

) �; 	 ` [�; id](h!;
i(V
0)) : h!i(B) by de�nition 7.4

) h!;
i(V 0) = [�; id](h!;
i(V
0))

) 	 ` h!;
i(V 0) 2 [[h!i(B)]] by de�nition

) 	 ` h!;
i(V 0) ,! V : h!i(B) by de�nition 7.4

) 	 ` V 2 jh!i(B)j by de�nition 7.4

) 	 ` it h!i [�; %](M) h[�; %](
)i ,! V : h!i(B) by application of EvIt

` ! : � by assumption

) �; 	 ` it h!i [�; %](M) h[�; %](
)i : h!i(B) by application of TpIt

) 	 ` it h!i [�; %](M) h[�; %](
)i 2 [[h!i(B)]] by de�nition 7.4

) 	 ` [�; %](it h!iM h
i) 2 [[h!i(B)]] by de�nition SBIt

2. Case: D = TmBase
�;� ` � : hB) Ai(�)

	 + � ` � 2 [[hB) Ai(�; �)]] by de�nition 7.7

) 	+ � ` [�; %](�) 2 [[hB) Ai(�; �)]] by application of SBXiEmpty

Case: D =
�; � ` � : hB) Ai(�0) �; � `M : C (B;A;B0)

TmInd
�;� ` (� j c 7!M) : hB) Ai(�0; c : B0)

�; � ` � : hB) Ai(�0) by assumption

) 	+ � ` [�; %](�) 2 [[hB) Ai(�0; �)]] by ind. hyp. (2)

�; � `M : C (B;A;B0) by assumption

) 	 ` [�; %](M) 2 [[C (B;A;B0)]] by ind. hyp. (1)

) 	+ � ` [�; %](�) j c 7! [�; %](M) 2 [[hB) Ai(�0; c : B0; �)]] by de�nition 7.7

) 	+ � ` [�; %](� j c 7!M) 2 [[hB) Ai(�0; c : B0; �)]] by application of SBXi

3. Case: D = TrBase
�;� ` � : h!i(�)

	 + � ` � 2 [[h!i(�; �)]] by de�nition 7.5

) 	+ � ` [�; %](�) 2 [[h!i(�; �)]] by application of SBOmegaEmpty

110 C CANONICAL FORM THEOREM

Case: D =
�; � `
 : h!i(�0) �; � `M : h!i(B0)

TrInd
�;� ` (
 j c 7!M) : h!i(�0; c : B0)

�; � `
 : h!i(�0) by assumption

) 	+ � ` [�; %](
) 2 [[h!i(�0; �)]] by ind. hyp. (3)

�; � `M : h!i(B0) by assumption

) 	 ` [�; %](M) 2 [[h!i(B0)]] by ind. hyp. (1)

) 	+ � ` [�; %](
) j c 7! [�; %](M) 2 [[h!i(�0; c : B0; �)]] by de�nition 7.5

) 	+ � ` [�; %](
 j c 7!M) 2 [[h!i(�0; c : B0; �)]] by application of SBOmega

2

Theorem 7.48 (Canonical form theorem)

If �; 	 `M : B then 	 `M * V : B

Proof: �; 	 `M : B by assumption

) 	 ` �; id	 2 [�;] by lemma 7.37

) 	 ` [�; id](M) 2 [[B]] by lemma 7.47

) �; 	 ` [�; id](M) : B by de�nition 7.4

) 	 `M 2 [[B]] by lemma 6.23

) 	 `M * V : B by lemma 7.17 (1)

2

D TYPE PRESERVATION THEOREM 111

D Type preservation theorem

Lemma 8.1 (Uniqueness of evaluation)

1. If 	 `M * V : A and 	 `M * V 0 : A then V = V 0

2. If 	 `M ,! V : A and 	 `M ,! V 0 : A then V = V 0

Proof: by induction over D :: 	 `M * V : A and E :: 	MVA

1. Case: E =
	 `M ,! V : a

EcAtomic
	 `M * V : a

:

	 `M ,! V 0 : a by inversion using EcAtomic

) V = V 0 by ind. hyp. (2)

Case: E =
	; x : B1 `M x * V1 : B2

EcArrow
	 `M * �x :B1: V1 : B1 ! B2

:

	; x : B1 `M x * V 0

1
: B2 by inversion using EcArrow

) V1 = V 0

1
by ind. hyp. (2)

) �x :B1: V1 = �x :B1: V
0

1
by de�nition

2. Case: D =
	(x) = A

EvVar
	 ` x ,! x : A

:

x = x by de�nition

Case: D =
�(c) = B

EvConst
	 ` c ,! c : B

:

c = c by de�nition

Case: D =
�; 	; x : A1 `M : A2

EvLam
	 ` �x :A1:M ,! �x :A1:M : A1 ! A2

:

�x :A1:M = �x :A1:M by de�nition

Case: D =
	 ` M1 ,! �x :A2:M

0

1
: A2 ! A1 	 ` M2 ,! V2 : A2 	 ` [V2=x](M

0

1
) ,! V : A1

EvApp
	 `M1 M2 ,! V : A1

:

	 `M1 ,! �x :A2:M
00

1
: A2 ! A1 by inversion using EvApp

) �x :A2:M
0

1
= �x :A2:M

00

1
by ind. hyp. (2)

	 `M2 ,! V 0

2
: A2 by inversion using EvApp

) V2 = V 0

2
by ind. hyp. (2)

) [V2=x](M
0

1
) = [V 0

2
=x](M 00

1
) by de�nition

) V = V 0 by ind. hyp.

Case: D =
	 `M1 ,! V1 : B2 ! B1 	 ` V1 # B2 ! B1 	 `M2 * V2 : B2

EvAtomic
	 `M1 M2 ,! V1 V2 : B1

:

	 `M1 ,! V 0

1
: B2 ! B1 by inversion using EvAtomic

) V1 = V 0

1
by ind. hyp. (2)

	 `M2 * V 0

2
: B2 by inversion using EvAtomic

) V2 = V 0

2
by ind. hyp. (1)

) V1 V2 = V 0

1
V 0

2

112 D TYPE PRESERVATION THEOREM

Case: D =
�; 	 `M1 : A1 �; 	 `M2 : A2

EvPair
	 ` hM1;M2i ,! hM1;M2i : A1 �A2

:

trivial

[Case:] D =
	 `M ,! hM1;M2i : A1 �A2 	 `M1 ,! V : A1

EvFst
	 ` fstM ,! V : A1

:

trivial

Case: D =
	 `M ,! hM1;M2i : A1 � A2 	 `M2 ,! V : A2

EvSnd
	 ` snd M ,! V : A2

:

trivial

Case: D =
�; � `M : A

EvBox
	 ` box M ,! box M : 2A

:

trivial

Case: D =
	 `M1 ,! boxM 0

1
: 2A 	 ` [M 0

1
=x](M2) ,! V : A2

EvLet
	 ` let box x = M1 in M2 ,! V : A2

:

trivial

Case: D =
	 ` M ,! box M 0 : 2B � `M 0

* V 0 : B 	 ` fB) A; �; �g(V 0) ,! V : C� (B;A;B)
EvCase

	 ` case hAi M h�i ,! V : C� (B;A;B)
:

trivial

Case: D =
	 `M ,! boxM 0 : 2B � `M 0 * V 0 : B 	 ` h!;
i(V 0) ,! V : h!i(B)

EvIt
	 ` it h!iM h
i ,! V : h!i(B)

:

trivial

2

Theorem 8.2 (Type preservation)

If �; 	 `M : A and 	 `M ,! V : A then �; 	 ` V : A

Proof: �; 	 `M : A by assumption

	 ` �; id	 2 [�;] by lemma 7.37

) 	 ` [�; id](M) 2 [[A]] by lemma 7.47

) 	 ` [�; id](M) 2 [[A]] by lemma 7.47

) �; 	 ` [�; id](M) : A by de�nition 7.4

) [�; id](M) = M by lemma 6.23

) 	 `M ,! V 0 : A by de�nition 7.4

) V = V 0 by lemma 8.1

) 	 ` V 2 jAj by de�nition 7.4

) 	 ` V 2 [[A]] by lemma 7.21

) �; 	 ` V : A by de�nition 7.4

2

E CONSERVATIVE EXTENSION THEOREM 113

E Conservative extension theorem

Lemma 9.1 (Typing extension)

If 	 `M : B then �; 	 `M : B

Proof: by induction over 	 `M : B

Case:
	(x) = B

StpVar
	 ` x : B

�; 	 ` x : B by application of TpVarReg

Case:
�(c) = B

StpConst
	 ` c : B

�; 	 ` c : B by application of TpConst

Case:
	; x : B1 `M : B2

StpLam
	 ` �x :B1:M : B1 ! B2

	; x : B1 `M : B2 by assumption

) �; 	; x : B1 `M : B2 by ind. hyp.

) �; 	 ` �x :B1:M : B1 ! B2 by application of TpLam

Case:
	 `M1 : B2 ! B1 	 `M2 : B2

StpApp
	 `M1 M2 : B1

	 `M1 : B2 ! B1 by assumption

) �; 	 `M1 : B2 ! B1 by ind. hyp.

	 ` 	 :M2B2 by assumption

) �; 	 ` 	 :M2B2 by ind. hyp.

) �; 	 `M1 M2 : B1 by application of TpApp

2

Theorem 9.2 (Conservative Extension)

If �; 	 `M : B then 	 `M * V : B and 	 ` V * B

Proof: �; 	 `M : B by assumption

) 	 `M * V : B by theorem 7.48 (1)

) 	 ` V * B by lemma 7.2 (1)

2

114 REFERENCES

References

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56{68, 1940.

[CNSvS94] Thierry Coquand, Bengt Nordstr�om, Jan M. Smith, and Bj�orn von Sydow. Type theory

and programming. Bulletin of the European Association for Theoretical Computer

Science, 52:203{228, February 1994.

[DFH95] Jo�elle Despeyroux, Amy Felty, and Andr�e Hirschowitz. Higher-order abstract syntax in

Coq. In M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of the International

Conference on Typed Lambda Calculi and Applications, pages 124{138, Edinburgh,

Scotland, April 1995. Springer-Verlag LNCS 902.

[DH94] Jo�elle Despeyroux and Andr�e Hirschowitz. Higher-order abstract syntax with induction

in Coq. In Frank Pfenning, editor, Proceedings of the 5th International Conference on

Logic Programming and Automated Reasoning, pages 159{173, Kiev, Ukraine, July

1994. Springer-Verlag LNAI 822.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In

Jr. Guy Steele, editor, Proceedings of the 23rd Annual Symposium on Principles of

Programming Languages, pages 258{270, St. Petersburg Beach, Florida, January 1996.

ACM Press.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes with

embedded functions (or, programs from outer space). In Proceedings of 23rd Annual

Symposium on Principles of Programming Languages, pages 284{294, St. Petersburg

Beach, Florida, January 1996. ACM Press.

[G�od90] Kurt G�odel. On an extension of �nitary mathematics which has not yet been used.

In Solomon Feferman et al., editors, Kurt G�odel, Collected Works, Volume II, pages

271{280. Oxford University Press, 1990.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.

Journal of the Association for Computing Machinery, 40(1):143{184, January 1993.

[JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for executable

higher-order algebraic speci�cation languages. In Gilles Kahn, editor, Proceedings of

the 6th Annual Symposium on Logic in Computer Science, pages 350{361, Amsterdam,

The Netherlands, July 1991. IEEE Computer Society Press.

[Mag95] Lena Magnusson. The Implementation of ALF|A Proof Editor Based on Martin-L�of 's

Monomorphic Type Theory with Explicit Substitution. PhD thesis, Chalmers University

of Technology and G�oteborg University, January 1995.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to

exponential types. In Proceedings of the 7th Conference on Functional Programming

Languages and Computer Architecture, La Jolla, California, June 1995.

REFERENCES 115

[Mil90] Dale Miller. An extension to ML to handle bound variables in data structures: Prelim-

inary report. In Proceedings of the Logical Frameworks BRA Workshop, Nice, France,

May 1990.

[Mil91] Dale Miller. Uni�cation of simply typed lambda-terms as logic programming. In Koichi

Furukawa, editor, Eighth International Logic Programming Conference, pages 255{269,

Paris, France, June 1991. MIT Press.

[Mil92] Dale Miller. Abstract syntax and logic programming. In Proceedings of the First

and Second Russian Conferences on Logic Programming, pages 322{337, Irkutsk and

St. Petersburg, Russia, 1992. Springer-Verlag LNAI 592.

[MM96] Raymond McDowell and Dale Miller. A logic for reasoning about logic speci�cations.

Draft manuscript, July 1996.

[NPS90] Bengt Nordstr�om, Kent Petersson, and Jan M. Smith. Programming in Martin-L�of 's

Type Theory: An Introduction, volume 7 of International Series of Monographs on

Computer Science. Oxford University Press, 1990.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In G�erard Huet and

Gordon Plotkin, editors, Logical Frameworks, pages 149{181. Cambridge University

Press, 1991.

[PM93] Christine Paulin-Mohring. Inductive de�nitions in the system Coq: Rules and proper-

ties. In M. Bezem and J.F. Groote, editors, Proceedings of the International Conference

on Typed Lambda Calculi and Applications, pages 328{345, Utrecht, The Netherlands,

March 1993. Springer-Verlag LNCS 664.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal �-calculus for S4. In S. Brookes and

M. Main, editors, Proceedings of the Eleventh Conference on Mathematical Founda-

tions of Programming Sematics, New Orleans, Louisiana, March 1995. To appear in

Electronic Notes in Theoretical Computer Science, Volume 1, Elsevier.

